It is.
An acid will be strong when its conjugated base is highly stable, and vice-versa.
That can occur for instance through electronic delocalization.
Answer:
Since one banknote has a thickness of about 0.1 millimeters, if all the banknotes produced in a year were stacked up, they would reach a height of approximately 300 kilometers, which is about 80 times the height of Mount Fuji.
PH + pOH = 14 ⇒ pOH = 14 - pH
pOH = 14 - 2.5
pOH = 11.5
[H⁺] = 10^(-pH) = 10^(-2.5)
[H⁺] = 0.003 M
[OH⁻] = 10^(-pOH) = 10^(-11.5) = 3 × 10⁻¹² M
[OH⁻] = 3 × 10⁻¹² M
pH = 2.5 implies one significant digit
Answer:
Rutherford's experiment, also known as
supports the existence of neutrons and the nucleus.
Explanation:
In the above diagram, Rutherford was trying to explain his contributions using thin foils of gold and other metals as targets for alpha particles from a radioactive source.
He observed that the majority of particles penetrated the foil either undeflected or with only a slight deflection. But, every now and then an alpha particle was scattered(or deflected) at a large angle..
According to Rutherford, most of the atoms must be empty space. This explains why the majority of alpha particles passed through through the gold foil with little or no deflection. The atoms positive charges, Rutherford proposed are all concentrated in the Nucleus, <em>which</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>dense</em><em> </em><em>central</em><em> </em><em>core</em><em> </em><em>withi</em><em>n</em><em> </em><em>the</em><em> </em><em>atom</em><em>. </em>
Whenever an alpha particle came close to a nucleus in the scattering experiment, it experienced a large repulsive force and therefore a large deflection. Moreover, an alpha particle coming towards a nucleus would be completely repelled and its direction would be reversed. The positively charged particles in the Nucleus are called Protons.
I <em>hope</em><em> </em><em>you</em><em> </em><em>find</em><em> </em><em>this</em><em> </em><em>useful</em><em>.</em><em>.</em><em>. </em><em>Have</em><em> </em><em>a</em><em> </em><em>lovely</em><em> </em><em>day</em><em>. </em>
Answer:
A type of an atom which has a different number of neutrons but the same atomic number, therefore making it the same element. This atom would still have the same properties as well. (Ex: Vanadium-51 is an isotope of Vanadium that has 51 neutrons but still has 23 protons, as its atomic number is 23.)