Answer:
Cloud condensation nuclei or CCNs are small particles typically 0.2 µm, or 1/100 the size of a cloud droplet on which water vapor condenses. Water requires a non-gaseous surface to make the transition from a vapour to a liquid; this process is called condensation.
Answer:
Carbon dioxide
Explanation:
Neither helium nor carbon dioxide has a molecular dipole, so their strongest van der Waals attractive forces are London forces.
Helium is a small spherical atom with only a two electrons, so its atoms have quite weak attractions to each other.
CO₂ is a large linear molecule. It has more electrons than helium, so the attractive forces are greater. Furthermore, the molecules can align themselves compactly side-by-side and maximize the attractions (see below).
For example. CO₂ becomes a solid at -78 °C, but helium must be cooled to -272 °C to make it freeze (that's just 1 °C above absolute zero).
Answer:
Explanation:
A) Formal charges represent an actual separation of charges.(FALSE)
(B) ΔHo rxn can be estimated from the bond enthalpies of reactants and products.(TRUE)
C)All second-period elements obey the octet rule in their compounds(FALSE).
(D)The resonance structures of a molecule can be separated from one another in the laboratory.(FALSE)
Bond enthalpy which is also reffered to as bond energy is the amount of energy that is required to break one mole of a bond.
taking the single bond between Oxygen and Hydrogen into considerationthe bond energy between their single bond is 463 kJ/mol.
formal charge is used for the comparison of the number of electrons present around an atom in a particular molecule with the number of electrons present around a neutral
Answer:
Enzymes.
Explanation:
That would be enzymes. They increase the rate of chemical reactions in cells.
I believe is different in pressure