Answer:
Option E is correct. none of the above is correct
Explanation:
Step 1: Data given
Solid Iron (III) = Fe^3+
iron (III) oxide = Fe2O3
Molar mass Fe = 55.845 g/mol
Molar mass Fe2O3 = 159.69 g/mol
Step 2: The balanced equation:
4Fe + 3O2 → 2Fe2O3
4 moles of iron will need 2 moles of oxygen gas to fully react
⇒ This is false 4 moles of iron will need 3 moles of oxygen gas to fully react
B.12 moles of iron, if reacted completely, can produce 8 moles of iron (III) oxide.
⇒ This is false: When 12 moles of iron completely react, we can produce 12/2 = 6 moles of Fe2O3
C.9 moles of oxygen can produce 9 moles of Iron (III) oxide
⇒ This is false; 9 moles of O2 can produce 6 moles of Fe2O3
D.6 moles of oxygen can react completely to produce 6 moles of iron (III) oxide.
⇒ This is false 6 moles of O2 will react completely to produce 4 moles of Fe2O3
E.none of the above
Answer:
2.453.
Explanation:
<em>∵ pH = - log[H₃O⁺]
</em>
[H₃O⁺] = 0.00352 M.
<em>∴ pH = - log[H₃O⁺] </em>= - log(0.00352) = <em>2.453.</em>
The general rule followed is that if electronegativity difference is greater than 2, then it is considered an ionic bond. An ionic bond is a type of bond characterizing a transfer of electrons within a bond. Common examples are salts which adds that ionic bonds are common between a metal and a nonmetal. Therefore, the best answer from above is letter B.
Answer:
The H in the carboxyl group.
Explanation:
Acetic acid can be written as CH₃COOH, where -COOH is the functional group carboxyl, responsible for the acidity of organic acids. The H in the carboxyl group is the one that is donated in the acid reaction.
CH₃COOH(aq) + H₂O(l) ⇄ CH₃COO⁻(aq) + H₃O⁺
Acetic acid is a weak acid, so just a small fraction of the molecules undergo this reaction to donate their hydrogen.
Answer:
The correct option is 2.No, because only electrons are involved in bonding.
Explanation:
The type of bond formed by carbon and nitrogen (carbon-nitrogen bond) is covalent bond
Also known as molecular bond, a covalent bond involves the sharing of pairs of electrons (known as bonding pairs or shared pairs) between the carbon and nitrogen atoms forming stable, balanced forces in attraction and repulsion as they share common electrons in their compounds.
This electron sharing covalent bond is what enables the formation of the several compounds between carbon and nitrogen for example, in an amine, nitrogen which has five electrons, has two remaining electrons that forms a lone pair whereby it can combine further with other elements.
Hence the factor that influences the bonds to make the numerous organic molecules is the available electrons which constitutes the shared electron pairs in covalent bonds while the neutrons which function is to keep the repulsive forces of positively charged protons from ripping the nucleus apart.