The gravitational force between two objects is given by

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects
In this problem,

,

and

, therefore the gravitational force between the two objects is
Answer:
The density of the woman is 950.8 kg/m³
Explanation:
Given;
fraction of the woman's volume above the surface = 4.92%
then, fraction of the woman's volume below the surface = 100 - 4.92% = 95.08%
the specific gravity of the woman 
The density of the woman is calculate as;

Density of fresh water = 1000 kg/m³
Density of the woman = 0.9508 x 1000 kg/m³
Density of the woman = 950.8 kg/m³
Therefore, the density of the woman is 950.8 kg/m³
Answer:
work = 1125 [J]
Explanation:
To solve this problem we must remember the definition of power, which is defined as the relationship between work and time. The power can be calculated using the following equation:
Power = work/time
Power = 12.5 [w]
work = joules [J]
time = 1.5 [min] = 90 [s]
work = 12.5*90
work = 1125 [J]
Answer:
ya we can write the imaginary character's name .
So that we can identify these imaginary people, as we cannot simply write the conversation and leave it .
Or maybe sometimes the reader will get confused as there is no name for the two people .
So, i suggest that you should write the names
Explanation:
You can even ask to your class teacher for further clarification
Answer:
c. vf is greator than v2, but less than v1
Explanation:
The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.
In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.
Collisions in which the kinetic energy is conserved are called elastic collision.
Collisions in which the kinetic energy is not conserved are called inelastic collisions. If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.
<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>
Therefore,
a. vf = v2 is wrong because vf is greater than v2
b. vf is less than v2 is wrong because vf is greater than v2
c. vf is greater than v2, but less than v1 is correct.
d. vf = v1 is wrong because vf is less than v1