Answer:
A. A potential energy function can be specified for a conservative force.
TRUE
because there is no loss of energy in conservative type of forces.
B. A nonconservative force permits a two-way conversion between kinetic and potential energies.
FALSE
It is not true because energy is not conserved in non-conservative forces.
C. The work done by a nonconservative force depends on the path taken.
TRUE
It depends on total path length while in conservative it only depends on initial and final state
D. A potential energy function can be specified for a nonconservative force.
FALSE
Since energy is not stored in non-conservative forces so it is not defined for non conservative forces
E. A conservative force permits a two-way conversion between kinetic and potential energies.
TRUE
Work done against conservative forces is stored in form of potential energy so it is possible to have two way conversion.
F. The work done by a conservative force depends on the path taken.
FALSE
Conservative force work depends only on initial and final state
Answer:
The angle is 25.34°.
Explanation:
Given that,
Wave length = 650 nm
Angle = 68.0°
We need to calculate the distance
For a diffraction grating



We need to calculate the angle
Using formula for angle




Hence, The angle is 25.34°.
Answer:
Let f be force of friction on the blocks kept on inclined plane. T be tension in the string
For motion of block on the inclined plane in upward direction
T - m₁gsin40 - f = m₁a
f = μ m₁gcos40
For motion of hanging block on in downward direction
m₂g - T = m₂ a
Adding to cancel T
m₂g - - m₁gsin40 - μ m₁gcos40 = a ( m₁+m₂ )
a = g (m₂ - - m₁sin40 - μ m₁cos40) / ( m₁+m₂ )
Putting the values
a = 9.8 ( 4.75 - 2.12-1.045) / 7.6
2.04 m s⁻²
M₂ will go down and M₁ will go up with acceleration .
Explanation:
Answer:
the density of indium is 7.2 g/cm^3
Explanation:
The computation of the density of indium is shown below:
Given that
Mass = 16.6 g
Volume = 48.6 c,^3 - 46.3cm^3 = 2.3 cm^3
Based on the above information
As we know that
Density = mass ÷ volume
So,
= 16.6g ÷ 2.3 cm^3
= 7.2 g/cm^3
hence, the density of indium is 7.2 g/cm^3
We simply applied the above formula so that the correct value could come
And, the same is to be considered