1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mars2501 [29]
3 years ago
14

A 90.0-kg fullback running east with a speed of 5.00 m/s is tackled by a 95.0-kg opponent running north with a speed of 3.00 m/s

. (a) Why does the tackle constitute a perfectly inelastic collision? (b) Calculate the velocity of the players immediately after the tackle and (c) determine the mechanical energy that is lost as a result of the collision. (d) Where did the lost energy go?
Physics
1 answer:
V125BC [204]3 years ago
7 0

Answer:

a) Please see below as the answer is self-explanatory.

b) 2.88 m/s

c) 785. 8 J

d) It is expended like thermal energy, due to internal friction.

Explanation:

a) In a tackle, both players keep emmeshed each other, so it is a perfectly inelastic collision; Immediately after the tackle, both masses behave like they were only one.

b) Assuming no external forces act during the collision, total momentum must be conserved.

As momentum is a vector, the conservation principle must be met by all vector components at the same time.

In our case, as the players move in directions mutually perpendicular, we can decompose the momentum vector along both directions, taking into account that after the collision, the momentum vector will have components along both directions.

So, if we call the W-E axis our X-axis (being the direction towards east as the positive one) , and to the S-N axis our Y -axis (being the northward direction the positive one), we can write the following equations:

pₓ₀ = pₓf ⇒ m₁*v₁ = (m₁+m₂)*vf*cosθ

py₀ = pyf ⇒ m₂*v₂ = (m₁+m₂)*vf*sin θ

where θ, is the angle that both players take regarding the x-axis after the collision (north of east).

Replacing by the values, we have the following equations:

vf*cosθ = (90.0 kg*5.00 m/s) / (90.0 kg + 95.0 kg) = 2.43 m/s (1)

vf*sin θ = (95.0 kg* 3.00 m/s) / (90.0 kg + 95.0 kg) = 1.54 m/s (2)

Dividing both sides:

sin θ / cos θ = tan θ = 1.54 / 2.43 = 0.634

⇒ arc tan (0.634) = 32.3º

Replacing in (1) we have:

vf = 2.43 m/s / cos 32.3º = 2.43 m/s / 0.845 = 2.88 m/s

c) As the collision happens in one dimension, all mechanical energy, before and after the collision, is just the kinetic energy of the players.

Before the collision:

K₀ = 1/2*m₁*v₁₀² + 1/2 m₂*v₂₀²

= 1/2*( ( 90.0) kg*(5.0)²(m/s)² + (95.0)kg*(3.0)(m/s)²) = 1,553 J

After the collision:

Kf = 1/2 *(m₁+ 767.2 Jm₂)*vf² = 1/2*185 kg*(2.88)²(m/s)²= 767.2 J

The mechanical energy lost during the collision is just the difference between the final and initial kinetic energy:

ΔK = Kf - K₀ = 767.2 - 1,553 J = -785.8 J

So, the magnitude of the energy lost during the collision is 785.8 J.

d) This energy is lost during the collision as thermal energy, due to the internal friction between both players.

You might be interested in
Please help, I do not understand what the question is asking
erica [24]
I’m pretty sure it just wants you to list the property’s meaning the material and density
3 0
3 years ago
(a) State Hook's law. [2]
murzikaleks [220]
Hookes law state that provided that the elastic limit is not exceeded, the extension is directly proportional to the force
3 0
3 years ago
A 1.0 m string with a 5 g stopper on the end is whirled in a vertical circle. The speed of the stopper is 8 m/s at the top of th
Andrew [12]

Answer:

Explanation:

A )

At the bottom of the circle , the potential energy of the stopper is converted into kinetic energy

1/2 m V² = mg x 2r + 1/2 mv²

m is mass of stopper , V is velocity at the bottom , r is radius of the circular path which is length of the string , v is velocity at the top

1/2  V² = g x 2r + 1/2 v²

 V² = g x 4r +  v²

 V² = 9.8 x 4 +  8²

V² = 103.2

V = 10.16 m/s

B )

If T be the tension at the top

Net downward force

= mg + T . This force provides centripetal force for the circular motion

mg +T = mv² / r

T =   mv²/r -mg

= m ( v²/r - g )

= .005 ( 8²/1 -g )

= .005 x 54.2

= .27 N .

C ) At the bottom

Net force = T  - mg , T is tension at the bottom , V is velocity at bottom

T-mg = mV²/r

T = m ( V²/r +g )

= .005 ( 10.16²/1 +9.8)

= .005 x 113

= .56 N .

3 0
3 years ago
Which best describes a concave lens?
-Dominant- [34]

Answer:

Explanation:

Concave lens also called as diverging lens i.e. it diverges ray of light coming towards it.

Concave lens is thicker at the edges and thinner at the center.

Concave lens formed the virtual image of the object i.e. it cannot be trace on screen. This lens is used to treat the nearsightedness or myopia in which a person is unable to see the far object clearly.

4 0
3 years ago
B. The role of the moon is greater than that of the sun in the occurrence of tides. ???​
ahrayia [7]

Our sun is 27 million times larger than our moon. Based on its mass, the sun's gravitational attraction to the Earth is more than 177 times greater than that of the moon to the Earth. If tidal forces were based solely on comparative masses, the sun should have a tide-generating force that is 27 million times greater than that of the moon. However, the sun is 390 times further from the Earth than is the moon. Thus, its tide-generating force is reduced by 3903, or about 59 million times less than the moon. Because of these conditions, the sun’s tide-generating force is about half that of the moon.

7 0
3 years ago
Other questions:
  • Suppose that the sun shrank in size but that its mass remained the same. What would happen to the orbit of the earth?
    5·1 answer
  • What is the mass number of a potassium atom that has 20 neutrons
    5·1 answer
  • Astronomers have no theoretical explanation for the ""hot Jupiters"" observed orbiting some other stars. (T/F)
    13·1 answer
  • How might a <br> Theory relate to a model
    14·1 answer
  • A train slows down as it rounds a sharp horizontal turn, going from 94.0 km/h to 46.0 km/h in the 17.0 s that it takes to round
    9·2 answers
  • A ball thrown horizontally from an apartment balcony hits the ground in 5 seconds. If the horizontal velocity of the ball is dou
    11·1 answer
  • 9. The three types of stress that act on Earth's rocks are compression, tension, and A. strain. B. shear. C. tephra. D. shale.
    13·2 answers
  • What angle of sunlight do we have in the northern hemisphere when it is winter?
    15·1 answer
  • How do oxygen and beryllium atoms transform into oxygen ion O2- and Be2 beryllium ion Be2? tysm
    9·2 answers
  • A 1000 kg boulder sits at the top of a 50-meter high cliff. Determine the amount of potential energy possessed by the boulder if
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!