Answer:
h = 1.8 m
Explanation:
The initial velocity of the glove, u =- 6 m/s
We need to find the maximum height of the glove. Let it is equal to h. Using equation of kinematics. At the maximum height v = 0
, h is the maximum height and a = -g

Hence, it will go up to a height of 1.8 m.
The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
A substance made up of only one type of element
Total displacement along the length of mountain is given as
L = 235 m
angle of mountain with horizontal = 35 degree
now we will have horizontal displacement as
x = L cos35
x = 235 cos35 = 192.5 m
similarly for vertical displacement we can say
y = L sin35
y = 235 sin35 = 134.8 m
Answer:
The periodic table illustrate some of the elements from Hydrogen to Calcium