The graph of an equation representing a direct variation passes through the point (6, 10). Give another point with integral coor
dinates that is also on the graph of this equation.
1 answer:
![\bf \qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ (\stackrel{x}{6},\stackrel{y}{10})\qquad \textit{we know that } \begin{cases} x=6\\ y=10 \end{cases}\implies 10=k6\implies \cfrac{10}{6}=k\implies \cfrac{5}{3}=k \\\\\\ therefore\qquad \boxed{y=\cfrac{5}{3}x}](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bdirect%20proportional%20variation%7D%20%5C%5C%5C%5C%20%5Ctextit%7B%5Cunderline%7By%7D%20varies%20directly%20with%20%5Cunderline%7Bx%7D%7D%5Cqquad%20%5Cqquad%20y%3Dkx%5Cimpliedby%20%5Cbegin%7Barray%7D%7Bllll%7D%20k%3Dconstant%5C%20of%5C%5C%20%5Cqquad%20variation%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%28%5Cstackrel%7Bx%7D%7B6%7D%2C%5Cstackrel%7By%7D%7B10%7D%29%5Cqquad%20%5Ctextit%7Bwe%20know%20that%20%7D%20%5Cbegin%7Bcases%7D%20x%3D6%5C%5C%20y%3D10%20%5Cend%7Bcases%7D%5Cimplies%2010%3Dk6%5Cimplies%20%5Ccfrac%7B10%7D%7B6%7D%3Dk%5Cimplies%20%5Ccfrac%7B5%7D%7B3%7D%3Dk%20%5C%5C%5C%5C%5C%5C%20therefore%5Cqquad%20%5Cboxed%7By%3D%5Ccfrac%7B5%7D%7B3%7Dx%7D)
to get another point, we simply can pick a random <u>independent variable</u>, namely "x", say hmmmm x = 9, thus

You might be interested in
Answer:
-569
Step-by-step explanation:
The anawer to your question is 3/6, and simplified as 1/2.
Answer:
x = 17
Step-by-step explanation:
5x + 29 + 2x + 32 = 180 (linear pair means that these angles add up to 180 cos they are in a line)
7x = 119
x = 17
the two integers 87 between is 86 87 89
Answer:
true
Step-by-step explanation: