Answer:
The center of mass of the Earth-Moon system is 4.673 kilometers away from center of Earth.
Explanation:
Let suppose that planet and satellite can be treated as particles. The masses of Earth and Moon (
,
) are
and
, respectively. The distance between centers is 384,403 kilometers. The location of the center of mass can be found by using weighted averages:

If
and
, then:


The center of mass of the Earth-Moon system is 4.673 kilometers away from center of Earth.
(1.a) The surface area being vibrated by the time the sound reaches the listener is 5,026.55 m².
(1.b) The intensity of the sound wave as it reaches the person listening is 0.02 W/m².
(1.c) The relative intensity of the sound as heard by the listener is 103 dB.
(2.a) The speed of sound if the air temperature is 15⁰C is 340.3 m/s.
(2.b) The frequency of the sound heard by the suspect is 614.3 Hz.
<h3>
Surface area being vibrated</h3>
The surface area being vibrated by the time the sound reaches the listener is calculated as follows;
A = 4πr²
A = 4π x (20)²
A = 5,026.55 m²
<h3>Intensity of the sound</h3>
The intensity of the sound is calculated as follows;
I = P/A
I = (100) / (5,026.55)
I = 0.02 W/m²
<h3>Relative intensity of the sound</h3>

<h3>Speed of sound at the given temperature</h3>

<h3>Frequency of the sound</h3>
The frequency of the sound heard is determined by applying Doppler effect.

where;
- -v₀ is velocity of the observer moving away from the source
- -vs is the velocity of the source moving towards the observer
- fs is the source frequency
- fo is the observed frequency
- v is speed of sound


Learn more about intensity of sound here: brainly.com/question/17062836
An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds
Answer:
34 m/s
Explanation:
m = Mass of glider with person = 680 kg
v = Velocity of glider with person = 34 m/s
= Mass of glider without person = 680-60 kg
= Gliders speed just after the skydiver lets go
= Mass of person = 60 kg
= Velcotiy of person = 34 m/s
As the linear momentum of the system is conserved

The gliders speed just after the skydiver lets go is 34 m/s