The compound is (Sulphuric Acid) H2SO4. On reacting with (Sodium Hydroxide) NaOH, it gives (2 Water Molecules/Colored) 2H2O and (1 Sodium Sulfate Molecule/Salt) Na2SO4
H2SO4 + NaOH —> 2H2O (aq.) + Na2SO4 (salt)
The resulted salt/compound (Na2SO4) when reacting with Methyl Orange (MO) is called ”Removal of methyl orange dye and Na2SO4 salt from synthetic wastewater using reverse osmosis (RO)”
The efficiency of reverse osmosis (RO) membranes used for treatment of colored water effluents can be affected by the presence of both salt and dyes.
Concentration polarization of each of the dye and the salt and the possibility of a dynamic membrane formed by the concentrated dye can affect the performance of the RO membrane.
The objective of the current work was to study the effect of varying the Na2SO4 salt and methyl orange (MO) dye concentrations on the performance of a spiral wound polyamide membrane.
The work also involved the development of a theoretical model based on the solution diffusion (SD) mass transport theory that takes into consideration a pressure dependent dynamic membrane resistance as well as both salt and dye concentration polarizations.
Control tests were performed using distilled water, dye/water and salt/water feeds to determine the parameters for the model.
The experimental results showed that increasing the dye concentration from 500 to 1000 ppm resulted in a decrease in the salt rejection at all of the operating pressures and for both feed salt concentrations of 5000 and 10,000 ppm.
Increasing the salt concentration from 5000 to 10,000 ppm resulted in a slight decrease in the percent dye removal. The model’s results agreed well with these general trends.
Weight. Because there is less gravity on the moon.
This is a very interesting problem ... mainly because it's different from
the usual questions in the Physics neighborhood.
I can discuss it with you, but maybe not quite give you a final answer
with the information you've given in the question.
I agree with all of your calculations so far ... the total energy required,
and the power implied if the lift has to happen in 5 seconds.
First of all, let's talk about power. I'm assuming that your battery is
a "car" battery, and I'm guessing you measured the battery voltage
while the car was running. Turn off the car, and you're likely to read
something more like 13 to 13.8 volts.
But that's not important right now. What I'm looking for is the CURRENT
that your application would require, and then to look around and see whether
a car battery would be capable of delivering it.
Power = (volts) x (current)
7,050 W = (14 volts) x (current)
Current = (7,050 watts / 14 volts) = 503 Amperes.
That kind of current knocks the wind out of me. I've never seen
that kind of number outside of a power distribution yard.
BUT ... I also know that the current demand from a car battery during
starting is enormous, so I'd better look around online and try to find out
what a car battery is actually capable of.
I picked a manufacturer's name that I'd heard of, then picked their
recommended battery for a monster 2003-model car, and looked at
the specs for the battery.
The spec I looked at was the 'CCA' ... cold cranking Amps.
That's the current the battery is guaranteed to deliver for 30 seconds,
at a temperature of 0°F, without dropping below 12 volts.
This battery that I saw is rated 803 Amps CCA !
OK. Let's back up a little bit. I'm pretty sure the battery you have
is a nominal "12-volt" battery. Let's say you use to start lifting the lift.
As the lift lifts, the battery voltage sags. What is the required current
if the battery immediately droops to 12V and stays there, while delivering
7,050 watts continuously ?
Power = (volts) x (current)
7,050 W = (12 V) x (current)
Current = (7,050 W / 12 V) = 588 Amps .
Amazingly, we may be in the ball park.
If the battery you have is rated by the manufacturer for 600 Amps
CCA (0°F) or CA (32°F), then the battery can deliver the current
you need.
BUT ... you can't conduct that kind of current through ear-bud wire,
or house wiring wire. I'm not even so sure of jumper-cables.
You need thick, no-nonsense cable, AND connections with a lot of
area ... No alligator clips. Shiny nuts and bolts with no crud on them.
Now ... I still want to check the matter of the total energy.
I'm sure you're OK, because the CCA and CA specifications talk about
30 seconds of cranking, and you're only talking about 5 seconds of lifting.
But I still want to see the total energy requirement compared to the typical
battery specification ... 'AH' ... ampere-hours.
You're talking about 35,000 joules
= 35,000 watt-seconds
= 35,000 volt-amp-seconds.
(35,000 volt-amp-sec) x (1 hour/3600 sec) / (12 volt)
= (35,000 x 1) / (3600 x 12) volt-amp-sec-hour / sec-volt
= 0.81 Amp-Hour .
That's an absurdly small depletion from your car battery.
But just because it's only 810 mAh, don't get the idea that you can
do it with a few rechargeable AA batteries out of your camera.
You still need those 600 cranking amps. That would be a dead short
for a stack of camera batteries, and they would shrivel up and die.
Have I helped you at all ?
Average speed is defined by the following formula

here
D = total distance that an object move from its initial position to final position
t = total time of the motion
so here we will say that there is no such relation between initial or final speed or we can say maximum or minimum speed of object with average speed of object.
We only need to find the total distance and total time of motion in order to find the average speed
here we can see many examples like let say an object moves with speed v1 for time t1 and then with speed v2 for time t2 then here average speed is given as

since we know that distance covered is product of speed and time
that's why we used above equation for finding total distance
now the average speed will be

so this is how we can find the average speed for above motion
so average speed is always between maximum and minimum speed any value in-between.
It is neither the maximum value nor it is minimum value
Answer:
a. 0.275m/s
b. 1.08m
Explanation:
Since the duck the paddle the water at an interval of 1.6sec, we can determine the frequency of the wave formed using the equation
f=1/T
Where T is the period.
f=1/1.6
f=0.625Hz.
Also from the equation used in determining the speed of a wave
V=fλ,
v=0.625*0.2
v=0.125m/s
in the question it was stated that that the duck produce a wave moving at a speed of 0.40m/s.
Hence the speed of the duck is
v(duck)=0.40-0.125
v(duck)=0.275m/s
b. The distance between the crest behind the duck is the wavelength of the waves.
To determine this, the wavelength is expressed as
λ=v/f
but the speed in this case is the speed of the duck and the surface wave,as this account for the wave speed behind the duck,
Hence we have
λ=(0.40+0.275)/0.625
λ=1.08m.
The wavelength behind the duck is 1.08m