Iodine electron configuration is:
1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^10 4P^6 5S^2 4d^10 5P^5
when Krypton is the noble gas in the row above iodine in the periodic table,
we can change 1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^10 4P^6 by the symbol
[Kr] of Krypton.
So we can write the electron configuration of Iodine:
[Kr] 5S^2 4d^10 5P^5
Answer:
Sodium has 11 protons and Magnesium has 12. The way that the periodic table is set up doesn't allow for any elements to be in between. The element would have to have 11.5 protons, which is impossible
Answer: There is one way to write it but i’ll also provide an unbalanced equation and a balanced one.
Explanation:
Unbalanced : Ba (aq) + Cl2 (aq)—-> BaCl (aq)
Balanced : 2Ba (aq) + Cl2 (aq)—> 2BaCl(aq)
Answer:
2Li(s) + ⅛S₈(s, rhombic) + 2O₂(g) → Li₂SO₄(s)
Explanation:
A thermochemical equation must show the formation of 1 mol of a substance from its elements in their most stable state,.
The only equation that meets those conditions is the last one.
A and B are wrong , because they show Li₂SO₄ as a reactant, not a product.
C is wrong because Li⁺ and SO₄²⁻ are not elements.
D is wrong because it shows the formation of 8 mol of Li₂SO₄.