Answer:
7.25 x 10^47
Explanation:
1.204 x 10^24 moles*6.022 x 10^23 avogadro's number= 7.25 x 10^
<em>From the above options, the best </em><em>Thermal insulator </em><em>will be a </em><em>Plastic cup.</em>
Option (b);
<u>Explanation</u>
Thermal insulators resist to conduct energy or reduction of heat transfer when objects come across in contact with radiation or higher heat object. To conduct energy we need metal or those materials which contain free electrons in it to move from one metal to another.
Plastic doesn't have metallic character so it will resist the heat up to some threshold. Mostly this material is used in separating two current-conducting material. There are many other examples of thermal insulator such as Rubber, fabrics, paper, wood, wool.
Answer:
∇T = 51.68°C
Explanation:
Mass = 150g
Heat Energy (Q) = 1.0*10³J
Change in temperature ∇T = ?
Q = mc∇T
Q = heat energy
M = mass
C = specific heat capacity of the gold = 0.129j/g°C
∇T = change in temperature
Q = Mc∇T
1.0*10³ = 150 * 0.129 * ∇T
1000 = 19.35∇T
Solve for ∇T
∇T = 1000 / 19.35
∇T = 51.679°C = 51.68°C
The change in temperature of gold was 51.68°C
Answer:
B) The metal temperature changed more than the water temperature did, but the metal lost
the same amount of thermal energy as the water gained.
Explanation:
Heat capacity or thermal capacity is defined as the amount of heat required by a given mass of a material to raise its temperature by one unit which means that the heat capacity of the water, that is the quantity of heat required to cause a rise from 22°C to 35°C that is a rise of 13°C is the quantity of heat that caused the drop in temperature of the metal from 100°C to 35°C a change of 65°C
The water has more capacity to absorb heat or a higher heat capacity than the metal
However, the first law of thermodynamics states that energy is neither created nor destroyed, but it changes from one form to another. In this case, the thermal energy lost by the metal is the same as the thermal or heat energy gained by the water
Explanation:
The given data is as follows.
Concentration of solution = 0.5 M
Volume of solution = 1 L
Molar mass of Glycylglycine = 132.119 g/mol
As molarity is the number of moles present in liter of solvent.
Mathematically, Molarity = 
Hence, calculate the number of moles as follows.
No. of moles = Molarity × Volume
= 
= 0.5 mol
Therefore, mass of glycylglycine = mol × molar mass
= 
= 66.06 g
Thus, we can conclude that 66.06 g glycylglycine is required.