Answer:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land.
Explanation:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land. Whereas, land breeze blows from the areas of higher pressure on land to the areas of lower pressure on water.
If it is incomplete or complete combustion. Normally the problems question with tell you.
EX:
"In the presence of plenty of oxygen" is complete combustion
"Not enough oxygen present" is incomplete combustion
Answer:
I think that middle school teachers are interested in teaching middle schoolers.
<h3>
Answer:</h3>
2.809 L of H₂SO₄
<h3>
Explanation:</h3>
Concept tested: Moles and Molarity
In this case we are give;
Mass of solid sodium hydroxide as 13.20 g
Molarity of H₂SO₄ as 0.235 M
We are required to determine the volume of H₂SO₄ required
<h3>First: We need to write the balanced equation for the reaction.</h3>
- The reaction between NaOH and H₂SO₄ is a neutralization reaction.
- The balanced equation for the reaction is;
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
<h3>Second: We calculate the umber of moles of NaOH used </h3>
- Number of moles = Mass ÷ Molar mass
- Molar mass of NaOH is 40.0 g/mol
Moles of NaOH = 13.20 g ÷ 40.0 g/mol
= 0.33 moles
<h3>Third: Determine the number of moles of the acid, H₂SO₄</h3>
- From the equation, 2 moles of NaOH reacts with 1 mole of H₂SO₄
- Therefore, the mole ratio of NaOH: H₂SO₄ is 2 : 1.
- Thus, Moles of H₂SO₄ = moles of NaOH × 2
= 0.33 moles × 2
= 0.66 moles of H₂SO₄
<h3>Fourth: Determine the Volume of the acid, H₂SO₄ used</h3>
- When given the molarity of an acid and the number of moles we can calculate the volume of the acid.
- That is; Volume = Number of moles ÷ Molarity
In this case;
Volume of the acid = 0.66 moles ÷ 0.235 M
= 2.809 L
Therefore, the volume of the acid required to neutralize the base,NaOH is 2.809 L.
Answer:
4.8 g/mL is the density of chloroform vapor at 1.00 atm and 298 K.
Explanation:
By ideal gas equation:

Number of moles (n)
can be written as: 
where, m = given mass
M = molar mass

where,
which is known as density of the gas
The relation becomes:
.....(1)
We are given:
M = molar mass of chloroform= 119.5 g/mol
R = Gas constant = 
T = temperature of the gas = 
P = pressure of the gas = 1.00 atm
Putting values in equation 1, we get:

4.8 g/mL is the density of chloroform vapor at 1.00 atm and 298 K.