Answer:
mass CaI2 = 23.424 Kg
Explanation:
From the periodic table we obtain for CaI2:
⇒ molecular mass CaI2: 40.078 + ((2)(126.90)) = 293.878 g/mol
∴ mol CaI2 = (4.80 E25 units )×(mol/6.022 E23 units) = 79.708 mol CaI2
⇒ mass CaI2 = (79.708 mol CaI2)×(293.878 g/mol) = 23424.43 g
⇒ mass CaI2 = 23.424 Kg
Answer: B) 2 (as indicated by electron distribution shown), but taking into account the real properties of this element, 4,7,8 also occur (see below).
Explanation:
This is the electron complement/atomic number of ruthenium, which actually has the structure [Kr] 5s1 4d7
Nevertheless, Ru does not form Ru(I) compounds and few Ru(II) compounds (RuCl2, RuBr2, RuI2). It also forms Ru(III)Cl3 and a larger number of Ru(IV) compounds, e.g. RuO2, RuS2. It also forms RuO4
Answer:
Repulsive forces exist only when atoms are very close to each other. (3/14) "They [the atoms] will approach until both nuclei will simply shove each other because both of them are positive." The balance between the attraction and repulsion forces determines how close the atoms can get. The relationships between the magnitude and direction of repulsive and attractive forces. A stable state of a bond is when attractive forces balance repulsion forces. “A stable state between two atoms is when they attract each other with a force that equals the force that they repel each other.”
The volume of one mole of any gas at Standard Temperature and Pressure (1 atm and 0 degrees Celsius [273K]) is 22.4 L.
Answer:
carbondioxide is an example of compound.