Iron (iii) chloride is obtained by vapor condensation from the reaction between chlorine gas and iron fillings.
<h3>How can iron (iii) chloride be formed from iron fillings?</h3>
Iron (ii) chloride can be formed from iron fillings in the laboratory as follows:
- Iron fillings + Cl₂ → FeCl₃
Chlorine gas is introduced into a reaction vessel containing iron fillings and the iron (iii) chloride vapor formed is obtained by condensation.
In conclusion, iron (iii) chloride is formed by the the direct combination of iron fillings and chlorine gas.
Learn more about iron (iii) chloride at: brainly.com/question/14653649
#SPJ1
Answer:
Explanation:
Chemical reactions involve combining different substances. The chemical reaction produces a new substance with new and different physical and chemical properties. Matter is never destroyed or created in chemical reactions. The particles of one substance are rearranged to form a new substance.
Answer:
the mole fraction of Gas B is xB= 0.612 (61.2%)
Explanation:
Assuming ideal gas behaviour of A and B, then
pA*V=nA*R*T
pB*V=nB*R*T
where
V= volume = 10 L
T= temperature= 25°C= 298 K
pA and pB= partial pressures of A and B respectively = 5 atm and 7.89 atm
R= ideal gas constant = 0.082 atm*L/(mol*K)
therefore
nA= (pA*V)/(R*T) = 5 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 2.04 mole
nB= (pB*V)/(R*T) = 7.89 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 3.22 mole
therefore the total number of moles is
n = nA +nB= 2.04 mole + 3.22 mole = 5.26 mole
the mole fraction of Gas B is then
xB= nB/n= 3.22 mole/5.26 mole = 0.612
xB= 0.612
Note
another way to obtain it is through Dalton's law
P=pB*xB , P = pA+pB → xB = pB/(pA+pB) = 7.69 atm/( 5 atm + 7.89 atm) = 0.612
<u>Answer:</u>
<em>4.5 L water we have in litres (L).</em>
<em><u></u></em>
<u>Explanation:</u>

where
= Final T - Initial T
Q is the heat energy in calories
c is the specific heat capacity (for water 1.0 cal/(g℃))
m is the mass of water
Plugging in the values

So,
Volume of water = mass/density

=4.5 L (Answer)