With that informatio you can:
1) Write the chemical equation
2) Balance the chemical equation
3) State the molar ratios
4) Predict if precipitation occurs.
I will do all four, for you:
1) Chemical equation:
mercury(I) nitrate potassium bromide mercury(I) bromide potassium nitrate
<span>Hg2(NO3)2 + KBr → Hg2Br2 + KNO<span>3
2) Balanced chemical equation
</span></span>
<span>Hg2(NO3)2 + 2KBr → Hg2Br2 + 2KNO<span>3
3) Molar ratios or proportions:
1 mol </span></span><span>Hg2(NO3)2 : 2 mol KBr : 1 mol Hg2Br2 : 2 mol KNO<span>3
4) Prediction of precipitation.
You can use the solubility rules or a table of solubilities. I found in a table of solutiblities that mercury(I) bromide is insoluble and potassium bromide is soluble, Then you can predict that the precipitation of mercury(I) bromide will occur.
</span></span>
Answer:
932.44 km/s
Explanation:
Given that:
The work function of the magnesium = 2.3 eV
Energy in eV can be converted to energy in J as:
1 eV = 1.6022 × 10⁻¹⁹ J
So, work function =
Using the equation for photoelectric effect as:
Also,
Applying the equation as:
Where,
h is Plank's constant having value
c is the speed of light having value
m is the mass of electron having value
is the wavelength of the light being bombarded
v is the velocity of electron
Given,
Thus, applying values as:
v = 9.3244 × 10⁵ m/s
Also, 1 m = 0.001 km
<u>So, v = 932.44 km/s</u>
Answer:
D. C → Cl electronegativity difference > 0.5
Explanation:
The electro negativity of an atom in a compound refers to its ability to attract the electrons of a bond towards itself.
On the Pauling's scale, carbon has an electro negativity value of 2.55 while that of chlorine is 3.16. The difference in electro negativity between the both atoms is about 0.61.
The dipole is aslways directed towards the more electronegative atom. Hence the direction is ; C → Cl