Answer:
B: circulatory system
Explanation:
The circulatory system is made up of blood vessels that carry blood away from and towards the heart. Arteries carry blood away from the heart and veins carry blood back to the heart. The circulatory system carries oxygen, nutrients, and hormones to cells, and removes waste products, like carbon dioxide.
The oxidation number of H is -1.
Sum of the oxidation numbers in each element =
charge of the complex
CaH₂ has 1 Ca atom and 2H atoms. The charge of
the complex is zero. Let’s say Oxidation number of H is "a".
Then,
<span> (+2)
+ 2 x a = 0 </span>
<span> +2 + 2a = 0</span>
2a = -2
a = -1
Hence, the oxidation number of Hydrogen atom in CaH₂ is -1
The number of molecules that are in balloon are = 2.227 x10^23 molecules
<h3> calculation</h3>
calculate the number of moles of NO
moles = mass/molar mass
molar mass of NO = 14+ 16 = 30 g/mol
moles is therefore= 11.1 g/30g/mol= 0.37 moles
by use of Avogadro's constant that is
1 mole= 6.02 x10^23 molecules
0.37 =? molecules
=(6.02 x10^23 x 0.37 moles)/ 1mole=2.227 x10^23 molecules
Answer:
[NH₃] = 14.7 mol/L
Explanation:
28 wt% is a type of concentration that indicates that 28 g of ammonia is contained in 100 g of solution.
Let's determine the amount of ammonia:
28 g . 1 mol / 17.03g = 1.64 moles of NH₃
You need to consider that, when you have density's data it is always referred to solution:
Mass of solution is 100 g, let's find out the volume
0.90 g/mL = 100 g /V
V = 100 g / 0.90mL/g → 111.1 mL
We convert the volume to L → 111.1 mL . 1 L/1000mL = 0.1111 L
mol/L = 1.64 mol/0.1111L → 14.7 M
mol/L = M → molarity a sort of concentration that indicates the moles of solute in 1L of solution