Answer:
The answer to your question is 27 g of Al
Explanation:
Data
mass of Al = ?
moles of Al₂O₃ = 0.5
The correct formula for the product is Al₂O₃
Balanced chemical reaction
4Al + 3O₂ ⇒ 2Al₂O₃
Process
1.- Calculate the molar mass of the product
Al₂O₃ = (27 x 2) + (16 x 3)
= 54 + 48
= 102 g
2.- Convert the moles of Al₂O₃ to grams
102 g ---------------- 1 mol
x ---------------- 0.5 moles
x = (0.5 x 102) / 1
x = 51 g of Al₂O₃
3.- Use proportions to calculate the mass of Al
4(27) g of Al --------------- 2(102) g of Al₂O₃
x --------------- 51 g
x = (51 x 4(27)) / 2(102)
x = 5508 / 204
x = 27 g of Al
Answer:
Ag⁺(aq) + Cl⁻(aq) ==> AgCl(s)
Explanation:
The net ionic equation can be described as the equation that contains only those species which would be participated in the chemical reaction. The spectator ions are the type of the ions that are present in both sides of the chemical equation these ions could not be present in the net ionic equation
First, it is easiest if you write the compete molecular equation:
AgNO₃(aq) + KCl(aq) ⇔ AgCl(s) + KNO₃(aq)
we look up which compounds are soluble (aq) and which are not (s). In this case, silver chloride (AgCl) is not soluble. Thus, the net ionic equation is...
Ag⁺(aq) + Cl⁻(aq) ==> AgCl(s)
Answer:
M = 0.23 M
Explanation:
Given data:
Molarity of solution = ?
Mass of NH₄Br = 4.50 g
Volume of solution = 213 mL (213 mL× 1L /1000 mL = 0.213 L)
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
Number of moles of NH₄Br:
Number of moles = mass/molar mass
Number of moles = 4.50 g / 97.94 g/mol
Number of moles = 0.05 mol
Molarity:
M = 0.05 mol/ 0.213 L
M = 0.23 M