Answer: Because of the fine bore of the tube.
Explanation:
Temperature is the degree of hotness and coldness. And thermometer is the instrument use to measure temperature.
The two most common types of themometric fluids for thermometer are alcohol and mercury.
What makes a clinical thermometer suitable for measuring small changes in body temperature is because of the fine bore of the tube which makes it possible for small temperature changes to cause large changes in the length of mercury columns, making the thermometer very sensitive to temperature changes.
The most prominent feature of the thermometer is the kink or constriction of bore near the bulb.
Answer:
The mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Explanation:
Moment before = Moment after

where;
I is moment of inertia = Mr² = 0.3 x (0.3)² = 0.027 kg.m²
substitute this in the above equation;
![m = \frac{ 0.027[3(2 \pi) - 2(2 \pi)]} {0.2^2 * 6\pi } = \frac{ 0.027[6 \pi - 4\pi]} {0.2^2 * 4\pi }\\\\m = 0.3375kg](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B%200.027%5B3%282%20%5Cpi%29%20%20-%202%282%20%5Cpi%29%5D%7D%20%7B0.2%5E2%20%2A%206%5Cpi%20%7D%20%3D%20%5Cfrac%7B%200.027%5B6%20%5Cpi%20%20-%204%5Cpi%5D%7D%20%7B0.2%5E2%20%2A%204%5Cpi%20%7D%5C%5C%5C%5Cm%20%3D%200.3375kg)
Therefore, the mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Yo no me voy a ir a la cama a
The range of the piece of paper is C) 1.4 m
Explanation:
The motion of the piece of paper is the motion of a projectile, which consists of two separate motions:
- A uniform motion along the horizontal direction, with constant velocity
- A uniformly accelerated motion along the vertical direction, with constant acceleration (the acceleration of gravity,
)
From the equation of motion, it is possible to find an expression for the range (the total horizontal distance covered) of a projectile, which is given by:

where
u is the initial velocity
is the angle of projection
g is the acceleration of gravity
For the piece of paper in this problem,
u = 4.3 m/s

Substituting,

Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly