Answer:
New Resistance = 0.5556 ohm
Explanation:
Resistance = resistivity * length /area
Here since resistivity and length are constant, we only need to see how the resistance increases or decreases with change in area.
New Area = pi * (3*D)^2 / 4
Old Area = pi * D^2 / 4
The ratio of new area / old area is :

Since area increases 9 times, and it is inversely proportional to resistance:
Resistance decreases by 9 times.
So, old resistance = Voltage / Current = 10 / 2 = 5 ohm
New Resistance = 5 / 9 = 0.5556 ohm (decreases by 9 times)
Answer:
-4*10⁴ units.
Explanation:
As the metal rod was initially neutral (which means that it has the same quantity of positive and negative charges), after being close to the charged sphere, as charge must be conserved, the total charge of the metal rod must still remain to be zero.
So, if due to the influence of the negative charge in the sphere, the half of the road closer to the sphere has a surplus charge of +4*10⁴ units, the charge on the half of the rod farther from the sphere must be the same in magnitude but of the opposite sign, i.e., -4*10⁴ units.
Oml... Its physical... Unless if your turning that wheat into bread by using fire it would be chemical.
Yeeeeeeeetus
<span>The answers are as follows:
(a) how many meters are there in 11.0 light-years?
11.0 light years ( 365 days / 1 year ) ( 24 h / 1 day ) ( 60 min / 1 h ) ( 60 s / 1 min ) ( 2.998x10^8 m/s ) = 1.04x10^17 m
(b) an astronomical unit (au) is the average distance from the sun to earth, 1.50 × 108 km. how many au are there in 11.0 light-years?
1.04x10^17 m ( 1 au / </span>1.50 × 10^8 km <span>) ( 1 km / 1000 m) = 693329.472 au
(c) what is the speed of light in au/h? au/h
</span>2.998 × 10^8 m/s ( 1 au / 1.50 × 10^8 km ) ( 1 km / 1000 m) ( 3600 s / 1 h ) = 7.1952 au/h
What’s the answer choices to pick from?