1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
3 years ago
7

An athlete kicks a soccer ball that starts at rest so that it leaves their foot with a speed of 10m/s from the top o f a rectang

ular shaped canyon. If the athlete's foot is in contact with the ball for only 0.02 seconds, determine the accceleration of the ball during the kick.
Physics
1 answer:
kirza4 [7]3 years ago
3 0

Answer:

a=500m/s^2

Explanation:

We need only to apply the definition of acceleration, which is:

a=\frac{v_f-v_i}{t_f-t_i}

In our case the final velocity is v_f=10m/s, the initial velocity is v_i=0m/s since it departs from rest, the final time is t_f=0.02s and the initial time we are considering is t_i=0s

So for our values we have:

a=\frac{10m/s-0m/s}{0.02s-0s}=500m/s^2

You might be interested in
A student believes a metal rod will gain a negative static charge when
Dennis_Churaev [7]

Answer:

no, when a plastic rod is rubbed with a duster, electrons are transferred from one material to the other. The material that gains electrons becomes negatively charged. The material that loses electrons becomes positively charged.

Explanation:

3 0
3 years ago
In the simulation, there are three balls on the floor. Drag each of them up off the floor, and then let go. See what happens to
Vlad1618 [11]

Answer:

I hope this helps and I'm not to late

A way the balls behave the same way is by bouncing about 1 time after throwing the balls up. A way the balls act differently is the blue ball is bouncier than all the balls, the red ball bounces about 2 times before stopping, and the green ball doesn’t really bounce except for one time.

Explanation:

you also can use paraphrase to help you reword bye bye!!

7 0
2 years ago
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 4 MPa, 500◦C, and 80 m/s, and the exit
Cerrena [4.2K]

Answer:

a) ΔEC=-23.4kW

b)W=12106.2kW

c)A=0.01297m^2

Explanation:

A)

The kinetic energy is defined as:

\frac{m*vel^2}{2} (vel is the velocity, to differentiate with v, specific volume).

The kinetic energy change will be: Δ (\frac{mvel^2}{2})=\frac{m*vel_2^2}{2}-\frac{m*vel_1^2}{2}

Δ (\frac{mvel^2}{2})=\frac{m}{2}*(vel_2^2-vel_1^2)

Where 1 and 2 subscripts mean initial and final state respectively.

Δ(\frac{mvel^2}{2})=\frac{12\frac{kg}{s}}{2}*(50^2-80^2)\frac{m^2}{s^2}=-23400W=-23.4kW

This amount is negative because the steam is losing that energy.

B)

Consider the energy balance, with a neglective height difference: The energy that enters to the turbine (which is in the steam) is the same that goes out (which is in the steam and in the work done).

H_1+\frac{m*vel_1^2}{2}=H_2+\frac{m*vel_2^2}{2}+W\\W=m*(h_1-h_2)+\frac{m}{2} *(vel_1^2-vel_2^2)

We already know the last quantity: \frac{m}{2} *(vel_1^2-vel_2^2)=-Δ (\frac{mvel^2}{2})=23400W

For the steam enthalpies, review the steam tables (I attach the ones that I used); according to that, h_1=h(T=500C,P=4MPa)=3445.3\frac{kJ}{kg}

The exit state is a liquid-vapor mixture, so its enthalpy is:

h_2=h_f+xh_{fg}=289.23+0.92*2366.1=2483.4\frac{kJ}{kg}

Finally, the work can be obtained:

W=12\frac{kg}{s}*(3445.3-2438.4)\frac{kJ}{kg} +23.400kW)=12106.2kW

C) For the area, consider the equation of mass flow:

m=p*vel*A where p is the density, and A the area. The density is the inverse of the specific volume, so m=\frac{vel*A}{v}

The specific volume of the inlet steam can be read also from the steam tables, and its value is: 0.08643\frac{m^3}{kg}, so:

A=\frac{m*v}{vel}=\frac{12\frac{kg}{s}*0.08643\frac{m^3}{kg}}{80\frac{m}{s}}=0.01297m^2

Download pdf
7 0
3 years ago
Which are characteristics of electromagnetic waves?check all that apply.
emmainna [20.7K]

Correct choices are marked in bold:

travel in straight lines and can bounce off surfaces  --> TRUE, normally electromagnetic waves travel in straight lines, however they can be reflected by objects, bouncing off their surfaces

travel through space at the speed of light  --> TRUE, all electromagnetic waves in space (vacuum) travel at the speed of light, c=3\cdot 10^8 m/s)

travel only through matter  --> FALSE; electromagnetic waves can also travel through vacuum

travel only through space  --> FALSE, electromagnetic waves can also travel through matter

can bend around objects  --> TRUE, this is what happens for instance when diffraction occurs: electromagnetic waves are bended around obstacles or small slits

move by particles bumping into each other  --> FALSE, electromagnetic waves are oscillations of electric and magnetic fields, so no particles are involved

move by the interaction between an electric field and a magnetic field --> TRUE, electromagnetic waves consist of an electric field and a magnetic field oscillating in a direction perpendicular to the direction of motion of the wave

8 0
3 years ago
Read 2 more answers
How do you find the letters to the science weather​
yaroslaw [1]

Answer:

ummmm

Explanation:

3 0
3 years ago
Other questions:
  • An object has a mass of 5 kg. What force is needed to accelerate it at 6 m/s2? (Formula: F=ma)
    6·2 answers
  • I need someone to give me 2 answers,
    6·1 answer
  • If you are standing at a beach on Earth at the same time that the shadow of the moon falls across your location, what event woul
    15·1 answer
  • In this section we considered a circular parallel-plate capacitor with a changing electric field. Describe the induced magnetic
    8·1 answer
  • 4. How does the type of medium affect a sound wave?
    10·1 answer
  • According to Archimedes’ principle, the mass of a floating object equals the mass of the fluid displaced by the object. Use this
    10·1 answer
  • Why do you think that this type of fossil is called a print fossil?
    10·1 answer
  • What is the difference between thermal energy and heat?
    12·1 answer
  • How long would it take a machine to do 5.000
    14·1 answer
  • How much heat is required to evaporate 0.15 kg of lead at 1750°C, the boiling point for lead? The heat of vaporization for lead
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!