Answer:
a
Explanation:
euejejejueeijeejejejejejje
Answer:
Examples of radioactive isotopes include carbon-14, tritium (hydrogen-3), chlorine-36, uranium-235, and uranium-238.
This is a combustion reaction.
2C6H6 + 9O2➡️ 6CO2 + 6H2O
pH of the acetyl choline solution before incubation = 7.65
![[H_{3}O^{+}]=10^{-7.65}=2.24*10^{-8}M](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%5D%3D10%5E%7B-7.65%7D%3D2.24%2A10%5E%7B-8%7DM)
pH of the solution after incubation = 6.87
![[H_{3}O^{+}]=10^{-6.87}=1.35*10^{-7}M](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%5D%3D10%5E%7B-6.87%7D%3D1.35%2A10%5E%7B-7%7DM)
The difference in concentration of hydronium ion before and after incubation
=
-
=
This difference in hydronium ion concentration can be attributed to the increase in the concentration of acetic acid, which is formed when acetylcholine is hydrolyzed by acetycholinesterase. The mole ratio of acetylcholine to acetic acid is 1:1.
Therefore the moles of acetylcholine = 
Answer:
b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.
Explanation:
The solubility of NaCH₃CO₂ in water is ~1.23 g/mL. This means that at room temperature, we can dissolve 1.23 g of solute in 1 mL of water (solvent).
<em>What would be the best method for preparing a supersaturated NaCH₃CO₂ solution?</em>
<em>a) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at room temperature while stirring until all the solid dissolves.</em> NO. At room temperature, in 100 mL of H₂O can only be dissolved 123 g of solute. If we add 130 g of solute, 123 g will dissolve and the rest (7 g) will precipitate. The resulting solution will be saturated.
<em>b) add 130 g of NaCH₃CO₂ to 100 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature. </em>YES. The solubility of NaCH₃CO₂ at 80 °C is ~1.50g/mL. If we add 130 g of solute at 80 °C and let it slowly cool (and without any perturbation), the resulting solution at room temperature will be supersaturated.
<em>c) add 1.23 g of NaCH₃CO₂ to 200 mL of H₂O at 80 °C while stirring until all the solid dissolves, then let the solution cool to room temperature.</em> NO. If we add 1.23 g of solute to 200 mL of water, the resulting solution will have a concentration of 1.23 g/200 mL = 0.00615 g/mL, which represents an unsaturated solution.