Answer:
Mass = 153.48 g
Explanation:
Given data:
Volume of solution = 2.50 L
Molarity = 0.48 M
Mass required = ?
Solution:
Molarity = number of moles / volume in litter
Number of moles = Molarity × volume in litter
Number of moles = 0.48 M × 2.50 L
Number of moles = 1.2 mol
Mass of HI:
Number of moles = mass/molar mass
Mass = Number of moles × molar mass
Mass = 1.2 mol × 127.9 g/mol
Mass = 153.48 g
Answer:
there is no question to answer :(
The atomic radius decreases
Answer:
2
Explanation:
Mass of water molecule = mass of hydrated salt - mass of anhydrous salt
Mass of water molecule = 5.00 - 4.26 = 0.74g of water molecule.
Number of moles = mass / molarmass
Molar mass of water = 18.015g/mol
No. of moles of water = 0.74 / 18.015 = 0.0411 moles.
Mass of BaCl2 present =?
1 mole of BaCl2 = 208.23 g
X mole of BaCl2 = 4.26 g
X = (4.26 * 1) / 208.23
X = 0.020
0.020 moles is present in 4.26g of BaCl2
Mole ratio between water and BaCl2 =
0.0411 / 0.020 = 2
Therefore 2 molecules of water is present the hydrated salt.
According to the <em>Law of Conservation of Mass</em>,
The mass of the products in a chemical reaction must equal the mass of the reactants.
∴ D is the Answer