Answer:
a) 0.1587
b) 0.0475
c) 0.7938
Step-by-step explanation:
Let's start defining our random variable.
X : ''Thickness (in mm) of ancient prehistoric Native American pot shards discovered in a Hopi village''
X is modeled as a normal random variable.
X ~ N(μ,σ)
Where μ is the mean and σ is the standard deviation.
To calculate all the probabilities, we are going to normalize the random variable X.
We are going to call to the standard normal distribution ''Z''.
[(X - μ) / σ] ≅ Z
We normalize by subtracting the mean to X and then dividing by standard deviation.
We can find the values of probabilities for Z in a standard normal distribution table.
We are going to call Φ(A) to the normal standard cumulative distribution evaluated in a value ''A''
a)

Φ(-1) = 0.1587
b)


1 - Φ(1.666) = 1 - 0.9525 = 0.0475
c)

Φ(1.666) - Φ(-1) = 0.9525 - 0.1587 = 0.7938
If you need part A, draw a person and label them 6 feet tall and a shadow coming off of him that is five feet long and draw a basketball hoop that and label it X feet tall and draw a shadow coming from it that is 8 feet long. To solve, you use proportions 6/5=X/8 solving this you get X=9.6 feet which is the height of the rim. Therefore, the rim does not meet regulation height, since the required height (10 feet) is greater than the actual height (9.6 feet).
Answer:
WXR=33
Step-by-step explanation:
46.19 should be the answer
now, this polynomial has roots of 3-i and 4i, namely 3 - i and 0 + 4i.
let's bear in mind that a complex root never comes all by her lonesome, her sibling is always with her, the conjugate, so if 3 - i is there, 3 + i is also coming along, likewise if 0 + 4i is there, her sibling 0 - 4i is also there.
![\bf \begin{cases} x=3-i\implies &x-3+i=0\\ x=3+i\implies &x-3-i=0\\ x=4i\implies &x-4i=0\\ x=-4i\implies &x+4i=0 \end{cases}\\\\[-0.35em] ~\dotfill\\\\ (x-3+i)(x-3-i)(x-4i)(x+4i)=\stackrel{y}{0} \\[2em] \underset{\textit{difference of squares}}{[(x-3)+i][(x-3)-i]}\underset{\textit{difference of squares}}{[x-4i][x+4i]}=0](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20x%3D3-i%5Cimplies%20%26x-3%2Bi%3D0%5C%5C%20x%3D3%2Bi%5Cimplies%20%26x-3-i%3D0%5C%5C%20x%3D4i%5Cimplies%20%26x-4i%3D0%5C%5C%20x%3D-4i%5Cimplies%20%26x%2B4i%3D0%20%5Cend%7Bcases%7D%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28x-3%2Bi%29%28x-3-i%29%28x-4i%29%28x%2B4i%29%3D%5Cstackrel%7By%7D%7B0%7D%20%5C%5C%5B2em%5D%20%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5B%28x-3%29%2Bi%5D%5B%28x-3%29-i%5D%7D%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%5Bx-4i%5D%5Bx%2B4i%5D%7D%3D0)
![\bf [(x-3)^2-i^2][x^2-(4i)^2]=y\implies [(x-3)^2-(-1)][x^2-(4^2i^2)]=0 \\[2em] [(x-3)^2-(-1)][x^2-(16(-1))]=0\implies [(x-3)^2+1][x^2+16]=0 \\[2em] [(x^2-6x+9)+1][x^2+16]=y\implies (x^2-6x+10)(x^2+16)=0 \\\\\\ x^4-6x^3+10x^2+16x^2-96x+160=0 \\\\\\ x^4-6x^3+26x^2-96x+160=0 \\\\\\ \stackrel{\textit{multiplying both sides by 4}}{4(x^4-6x^3+26x^2-96x+160)=4(0)} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill 4x^4-24x^3+104x^2-384x+640=y~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5B%28x-3%29%5E2-i%5E2%5D%5Bx%5E2-%284i%29%5E2%5D%3Dy%5Cimplies%20%5B%28x-3%29%5E2-%28-1%29%5D%5Bx%5E2-%284%5E2i%5E2%29%5D%3D0%20%5C%5C%5B2em%5D%20%5B%28x-3%29%5E2-%28-1%29%5D%5Bx%5E2-%2816%28-1%29%29%5D%3D0%5Cimplies%20%5B%28x-3%29%5E2%2B1%5D%5Bx%5E2%2B16%5D%3D0%20%5C%5C%5B2em%5D%20%5B%28x%5E2-6x%2B9%29%2B1%5D%5Bx%5E2%2B16%5D%3Dy%5Cimplies%20%28x%5E2-6x%2B10%29%28x%5E2%2B16%29%3D0%20%5C%5C%5C%5C%5C%5C%20x%5E4-6x%5E3%2B10x%5E2%2B16x%5E2-96x%2B160%3D0%20%5C%5C%5C%5C%5C%5C%20x%5E4-6x%5E3%2B26x%5E2-96x%2B160%3D0%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%204%7D%7D%7B4%28x%5E4-6x%5E3%2B26x%5E2-96x%2B160%29%3D4%280%29%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%204x%5E4-24x%5E3%2B104x%5E2-384x%2B640%3Dy~%5Chfill)