Answer:
0.0905 M
Explanation:
Let's consider the neutralization reaction between H2SO4 and KOH.
H₂SO₄ + 2 KOH → K₂SO₄ + 2 H₂O
22.87 mL of 0.158 M KOH react. The reacting moles of KOH are:
0.02287 L × 0.158 mol/L = 3.61 × 10⁻³ mol
The molar ratio of H₂SO₄ to KOH is 1:2. The reacting moles of H₂SO₄ are 1/2 × 3.61 × 10⁻³ mol = 1.81 × 10⁻³ mol
1.81 × 10⁻³ moles of H₂SO₄ are in 20.0 mL. The molarity of H₂SO₄ is:
M = 1.81 × 10⁻³ mol / 0.0200 L = 0.0905 M
Answer:
They are heavy metals.
Explanation:
Heavy metals are generally defined as metals with relatively high densities, atomic weights, or atomic numbers.
The answer is 34.1 mL.
Solution:
Assuming ideal behavior of gases, we can use the universal gas law equation
P1V1/T1 = P2V2/T2
The terms with subscripts of one represent the given initial values while for terms with subscripts of two represent the standard states which is the final condition.
At STP, P2 is 760.0torr and T2 is 0°C or 273.15K. Substituting the values to the ideal gas expression, we can now calculate for the volume V2 of the gas at STP:
(800.0torr * 34.2mL) / 288.15K = (760.0torr * V2) / 273.15K
V2 = (800.0torr * 34.2mL * 273.15K) / (288.15K * 760.0torr)
V2 = 34.1 mL
Answer:
finding the mass percentage oven element in a compound might sound complicated, but the calculation is simple. For example, to determine the mass percentage of hydrogen in water H2O, divide the major mass of hydrogen by the total molar mass of water and then multiply the result by 100
Answer:
It is involved in the conversion of ADP to ATP
Explanation:
Most enzymes in biological systems function by reversible uptake and release of hydrogen in redox processes. The enzyme that catalyses the conversion of ADP to ATP also works by hydrogen ion transfer. Hence H+ is required in photosynthesis for the conversion of ADP to ATP