Answer:
A
Explanation:
the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work.
Answer:

Explanation:
Hello,
In this case, it is possible to determine the pressures of both helium and neon as shown below:

Now, one considers the total moles (addition between both neon's and helium's moles) and the total volume to compute the final pressure as shown below:

Best regards.
Answer:
MnO3 radical anion. Formula: MnO3- Molecular weight: 102.9368.
Answer:
1. 9.57 × 10^-9 moles.
2. 7.38mol
Explanation:
1.) To find the number of moles there are in the number of particles in an atom, we divide the number of particles (nA) by Avagadro's constant (6.02 × 10^23)
Hence, to find the number of moles (n) of Manganese (Mn), we say:
5.76 x 10^15 atoms ÷ 6.02 × 10^23
5.76/6.02 × 10^(15-23)
= 0.957 × 10^-8
= 9.57 × 10^-9 moles.
2.) Mole = mass/molar mass
Molar mass of sodium chloride (NaCl) = 23 + 35.5
= 58.5g/mol
mole = 431.6 g ÷ 58.5g/mol
mole = 7.38mol
Answer:
- The first picture attached is the diagram that accompanies the question.
- The<u> second picture attached</u> is the diagram with the answer.
Explanation:
In the box on the left there are 8 Cl⁻ ions and 8 Na⁺ ions.
The dissociaton equation for NaCl(aq) is:
- NaCl (aq) → Na⁺ (aq) + Cl⁻(aq)
The dissociation equation for CaCl₂ (aq) is:
- CaCl₂ (aq) → Ca²⁺ (aq) + 2Cl⁻(aq)
A 0.10MCaCl₂ (aq) solution will have half the number of CaCl₂ units as the number of NaCl units in a 0.20M NaCl (aq) solution.
Thus, while the 0.20M NaCl (aq) solution yields 8 ions of Na⁺ and 8 ions of Cl⁻, the 0.10MCaCl₂ (aq) solution will yield 4 ions of Ca²⁺ (half because the concentration if half) and 8 ions of Cl⁻ (first take half and then multiply by 2 because the dissociation reaction).
Thus, your drawing must show 4 dots representing Ca²⁺ ions and 8 dots representing Cl⁻ ions in the box on the right.