Answer:
40.5 g of P₄O₁₀ are produced
Explanation:
We state the reaction:
P₄ + 5O₂ → P₄O₁₀
We do not have data from P₄ so we assume, it's the excess reactant.
We need to determine mass of oxygen and we only have volumne so we need to apply density.
Density = mass / volume, so Mass = density . volume
Denstiy of oxygen at STP is: 1.429 g/L
1.429 g/L . 16.2L = 23.15 g
We determine the moles: 23.15 g . 1mol / 33.472g = 0.692 moles
5 moles of O₂ can produce 1 mol of P₄O₁₀
Our 0.692 moles may produce (0.692 . 1)/ 5 = 0.138 moles
We determine the mass of product:
0.138 mol . 292.88 g/mol = 40.5 g
Answer: 12 L fluorine gas at STP can be collected from the decomposition of 90.7 g of 
Explanation:
The balanced decomposition reaction is shown as

moles of 
According to stoichiometry:
2 moles of
gives = 3 moles of flourine gas
Thus 0.36 moles of
gives =
of flourine gas
Using ideal gas equation :

P = pressure of gas = 1 atm ( at STP)
V = Volume of gas = ?
n = moles of gas = 0.54
R = gas constant = 0.0821 L atm/Kmol
T = temperature = 273 K ( at STP)
Putting the values we get :


Thus 12 L fluorine gas at STP can be collected from the decomposition of 90.7 g of 
Answer:
no of moles=mass in gm÷molar mass so let x be the mass in gm
4.5=x÷35.5×2
x=4.5×35.5×2 grams
x=319.5 gm
Explanation:
formula
Answer:
Explanation:
KHT is a salt which ionises in water as follows
KHT ⇄ K⁺ + HT⁻
Solubility product Kw= [ K⁺ ] [ HT⁻ ]
product of concentration of K⁺ and HT⁻ in water
In KCl solution , the solubility product of KHT will be decreased .
In KCl solution , there is already presence of K⁺ ion in the solution . So
in the equation
[ K⁺ ] [ HT⁻ ] = constant
when K⁺ increases [ HT⁻ ] decreases . Hence less of KHT dissociates due to which its solubility decreases . It is called common ion effect . It is so because here the presence of common ion that is K⁺ in both salt to be dissolved and in solvent , results in decrease of solubility of the salt .
Answer:
Hello
Topsoil consists of most weathered mineral and organic material. Biological agents are also responsible for the breakdown of complex organic matter which releases simple nutrients. This process of mineralisation make soil fertile.
Explanation: