Answer:
77
Explanation:
H2O needs 2 hydrogens and you have 154 so 154/2 is 77
thats the most you can do
Answer:
= 62.1 hours
Explanation:
Energy provide by the serving is 65 cal
= 65 cal × 4.184 Kj = 271.96 kJ
271.96 KJ = 271960 J
Energy required for 1minute of energy
= 73 x 1
= 73 J/min
So, 271960 joules will be required for 271960 heart beat
Minutes = 271960 / 73
= 3593.94 minutes
Time in hours = 3725.429 / 60
= 62.1 hours
Answer:
A. Boyle's Law
B. Charles' Law
C. Gay-Lussac's Law
Explanation:
An air bag inflates due to the decomposition of sodium azide or NaN₃ to completely fill the bag with nitrogen gas which is an example of Boyle's law, which states that the pressure of a given mass of gas is inversely proportional to its volume, hence due to the estricted volume of the airbag, the pressure of the nitrogen gas in the bag increses protecting the occupants of a cr from injuries in a crash
Helium balloon decrease in sice in a freezer is an example of Charlles law which states that the volume of a given mass of gas is nverslely proportionl to its temperature at constant pressure
A can of spray paint will explode if tossed into a fire is an example of Gay-Lussac's Law which states that the pressure of a given mass of gas is directly proportional to its temperature hence the increased pressure causes the can ti explode
Answer:
The combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
Explanation:
Given;
CH₄ + 2O₂ → CO₂ + 2H₂O, ΔH = -890 kJ/mol
From the combustion reaction above, it can be observed that;
1 mole of methane (CH₄) released 890 kilojoules of energy.
Now, we convert 59.7 grams of methane to moles
CH₄ = 12 + (1x4) = 16 g/mol
59.7 g of CH₄ 
1 mole of methane (CH₄) released 890 kilojoules of energy
3.73125 moles of methane (CH₄) will release ?
= 3.73125 moles x -890 kJ/mol
= -3320.81 kJ
Therefore, the combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy