The answer to this question is a) sulfur
Answer:
a)
= 0.25 m / s b) u = 0.25 m / s
Explanation:
a) To solve this problem let's start with the conservation of the moment, for this we define a system formed by the ball plus the dog, in this case all the forces are internal and the moment is conserved
We will write the data
m₁ = 0.40 kg
v₁₀ = 9.0 m / s
m₂ = 14 kg
v₂₀ = 0
Initial
po = m₁ v₁₀
Final
= (m₁ + m₂) vf
po = pf
m₁ v₁₀ = (m₁ + m₂) 
= v₁₀ m₁ / (m₁ + m₂)
= 9.0 (0.40 / (0.40 +14)
= 0.25 m / s
b) This is the reference frame of the center of mass of the system in this case the speed of this frame is the speed of the center of mass
u = 0.25 m / s
In the direction of movement of the ball
c) Let's calculate the kinetic energy in both moments
Initial
K₀ = ½ m₁ v₁₀² +0
K₀ = ½ 0.40 9 2
K₀ = 16.2 J
Final
= ½ (m₁ + m₂)
2
= ½ (0.4 +14) 0.25 2
= 0.45 J
ΔK = K₀ - 
ΔK = 16.2-0.445
ΔK = 1575 J
These will transform internal system energy
d) In order to find the kinetic energy, we must first find the velocities of the individual in this reference system.
v₁₀’= v₁₀ -u
v₁₀’= 9 -.025
v₁₀‘= 8.75 m / s
v₂₀ ‘= v₂₀ -u
v₂₀‘= - 0.25 m / s
‘=
- u
= 0
Initial
K₀ = ½ m₁ v₁₀‘² + ½ m₂ v₂₀‘²
Ko = ½ 0.4 8.75² + ½ 14.0 0.25²
Ko = 15.31 + 0.4375
K o = 15.75 J
Final
= ½ (m₁ + m₂) vf’²
= 0
All initial kinetic energy is transformed into internal energy in this reference system
Answer:
speed and acceleration
Explanation:
speed is a scalar quantity
acceleration is a vector quantity
Answer:
d = 10.2 m
Explanation:
When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

where,
m = mass of car
v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)
v = 10 m/s
F = force on the car in direction of inclination = W Sin θ
W = weight of car = mg
θ = Angle of inclinition = 30°
d = distance covered up the ramp = ?
Therefore,

<u>d = 10.2 m</u>