1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
const2013 [10]
3 years ago
7

The following statements are about the laminar boundary layer over a flat plate. For each statement, answer whether the statemen

t is true or false.
1. At a given x-location, if the Reynolds number were to increase, the boundary layer thickness would also increase.
A. True B. False
2. As outer flow velocity increases, so does the boundary layer thickness.
A. True B. False
3. As the fluid viscosity increases, so does the boundary layer thickness.
A. True B. False
4. As the fluid density increases, so does the boundary layer thickness.
A. True B. False
5. The boundary layer equations are approximations of the Navier-Stokes equation.
A. True B. False
6. The curve representing boundary layer thickness as function of x is a streamline.
A. True B. False
7. The boundary layer approximation bridges the gap between the Euler equation and the Navier-Stokes equation.
A. True B. False
Engineering
1 answer:
Nikolay [14]3 years ago
6 0

Answer:

1. B. False

2.  B. False

3. A. True

4. B. False

5. A. True

6. A. True

7. A. True

Explanation:

1. B. False

The relation of Reynolds' number, Reₓ to boundary layer thickness δ at a point x is given by the relation

\delta = \dfrac{x \times C}{\sqrt{Re_x} }

That is the boundary layer thickness is inversely proportional to the square root of the Reynolds' number so that if the Reynolds' number were to increase, the boundary layer thickness would decrease

Therefore, the correct option is B. False

2.  B. False

From the relation

Re_x = \dfrac{U_o \times x}{v}

As the outer flow velocity increases, the boundary layer thickness diminishes

3. A. True

As the viscous force is increased the boundary layer thickness increases

4. B. False

Boundary layer thickness is inversely proportional to velocity

5. A. True

The boundary layer model developed by Ludwig Prandtl is a special case of the Navier-Stokes equation

6. A. True

Given a definite boundary layer thickness, the curve representing the boundary layer thickness is a streamline

7. A. True

The boundary layer approximation by Prandtl Euler bridges the gap between the Euler (slip boundary conditions) and Navier-Stokes (no slip boundary conditions) equations.

You might be interested in
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
Two particles have a mass of 7.8 kg and 11.4 kg , respectively. A. If they are 800 mm apart, determine the force of gravity acti
aleksley [76]

Answer:

A) About 9.273 \times 10^{-9} newtons

B) 76.518 newtons

C) 111.834 newtons

Explanation:

A) F_g=\dfrac{GM_1M_2}{r^2} , where G is the universal gravitational constant, M 1 and 2 are the masses of both objects in kilograms, and r is the radius in meters. Plugging in the given numbers, you get:

F_g=\dfrac{(6.67408 \times 10^{-11})(7.8)(11.4)}{(0.8)^2}\approx 9.273 \times 10^{-9}

B) You can find the weight of each object on Earth because you know the approximate acceleration due to gravity is 9.81m/s^2. Multiplying this by the mass of each object, you get a weight for the first particle of 76.518 newtons.

C) You can do a similar thing to the previous particle and find that its weight is 11.4*9.81=111.834 newtons.

Hope this helps!

3 0
3 years ago
What is the most important part of a successful Election Day?
wlad13 [49]

Answer: voting of course

Explanation:

8 0
2 years ago
Read 2 more answers
three balls each have a mass m if a has a speed v just before a direct collision with B determine the speed of C after collision
ratelena [41]

Answer:

Vc2= V(l+e) ^2/4

Vg2= V(l-e^2)/4

Explanation:

Conservation momentum, when ball A strikes Ball B

Where,

M= Mass

V= Velocity

Ma(VA)1+ Mg(Vg)2= Ma(Va)2+ Ma(Vg)2

MV + 0= MVg2

Coefficient of restitution =

e= (Vg)2- (Va)2/(Va)1- (Vg)1

e= (Vg)2- (Va)2/ V-0

Solving equation 1 and 2 yield

(Va)2= V(l-e) /2

(Vg)2= V(l+e)/2

Conservative momentum when ball b strikes c

Mg(Vg)2+Mc(Vc)1 = Mg(Vg)3+Mc(Vc)2

=> M[V(l+e) /2] + 0 = M(Vg)3 + M(Vc) 2

Coefficient of Restitution,

e= (Vc)2 - (Vg)2/(Vg)2- (Vc)1

=> e= (Vc)2 - (Vg)2/V(l+e) /2

Solving equation 3 and 4,

Vc2= V(l+e) ^2/4

Vg2= V(l-e^2)/4

8 0
3 years ago
Read 2 more answers
"Using your favorite search engine and the resources of your library, develop a set of recommendations regarding the possible us
alina1380 [7]

Answer:

Cloud computing services are going to be very important to supporting Ashville's mobile app since it has different uses. These applications uses include; data storage, as well as helping to provide network to any business data related work. This will improve the city of Ashville's mobile app operations considerably.

The benefits of using cloud computing are; it allows a business managers to be more concerned with running the business themselves rather than maintaining the data center. The use of cloud computing allows a company's IT administrators to focus on managing the company's operations, thereby allowing performance to be enhanced of the business enterprise.

A commercial company is able to create new technologies more rapidly with the use of cloud computing. Furthermore, the enterprise will be able to automate its activities using cloud computing. Cloud computing is also very important as it is more affordable and thus promotes the company's growth in the market. Cloud computing is also enhancing the global presence of the Ashville mobile app. The drawbacks of using cloud computing include the following; due to using the cloud infrastructure, the company's performance may be unreliable. People believe that cloud computing is not reliable and that cloud computing may not be secure at last and can't always be right for all workloads.

Explanation:

5 0
3 years ago
Other questions:
  • An electric field is expressed in rectangular coordinates by E = 6x2ax + 6y ay +4az V/m.Find:a) VMN if point M and N are specifi
    9·1 answer
  • Exercise 19
    15·1 answer
  • If a barrel of oil weighs 1.5 kN, calculate the specific weight, density, and specific gravity of the oil. The barrel weighs 110
    7·1 answer
  • If a machine uses LESS effort to overcome a given resistance force (if Fe is less than FR), it has an actual mechanical advantag
    13·1 answer
  • if you had 100 B size sheets and you cut them into A size sheets, how many sheets of A size paper would you have
    14·1 answer
  • A block of ice weighing 20 lb is taken from the freezer where it was stored at -15"F. How many Btu of heat will be required to c
    15·1 answer
  • If 3 varies inversely as x and y=2 when x=25, find x when y=40
    7·1 answer
  • Plateau Creek carries 5.0 m^3 /s of water with a selenium (Se) concentration of 0.0015 mg/L. A farmer withdraws water at a certa
    12·1 answer
  • A helicopter is hovering in a steady cross wind at a gross weight of 3,000 lb (1,360.8 kg). This helicopter has 275 hp (205 kW)
    10·1 answer
  • Lets Try This: study the pictures. Describe what you see and think about it. write your answer on a sheet of paper. home room
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!