Answer:
The MATLAB Code for this PI Controller will be:
Kp = 350;
Ki = 300;
Kd = 50;
C = pid(Kp,Ki,Kd)
T = feedback(C*P,1);
t = 0:0.01:2;
step(T,t)
Explanation:
When you are designing a PID controller for a given system, follow the steps shown below to obtain a desired response.
Obtain an open-loop response and determine what needs to be improved
Add a proportional control to improve the rise time
Add a derivative control to reduce the overshoot
Add an integral control to reduce the steady-state error
Adjust each of the gains $K_p$, $K_i$, and $K_d$ until you obtain a desired overall response.
The further explanation is attached in the Word File.
Answer:
The final temperature of water is 381.39 °C.
Explanation:
Given that
Mass of water = 5 kg
Heat transfer at constant pressure Q = 2960 KJ
Initial temperature = 240 °C
We know that heat transfer at constant pressure given as follows

We know that for water

Lets take final temperature of water is T
So


T=381.39 °C
So the final temperature of water is 381.39 °C.
Answer:
The head loss in Psi is 0.390625 psi.
Explanation:
Fluid looses energy in the form of head loss. Fluid looses energy in the form of head loss when passes through the valve as well.
Given:
Factor cv is 48.
Flow rate of water is 30 GPM.
GPM means gallon per minute.
Calculation:
Step1
Expression for head loss for the water is given as follows:

Here, cv is valve coefficient, Q is flow rate in GPM and h is head loss is psi.
Step2
Substitute 48 for cv and 30 for Q in above equation as follows:


h = 0.390625 psi.
Thus, the head loss in Psi is 0.390625 psi.
Answer:
Answer is c Heisenberg's uncertainty principle
Explanation:
According to Heisenberg's uncertainty principle there is always an inherent uncertainty in measuring the position and momentum of a particle simultaneously.
Mathematically

here 'h' is planck's constant
Where are the statements then bbs lol