Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C
Answer:
Under no circumstances
Explanation:
I'm not 100% sure why, but I remember hearing that you're not suposed to go over the speed limit no matter what
Answer:
b i think i dont see any dial caliper
Explanation:
Answer:
total weight of aggregate = 5627528 lbs = 2814 tons
Explanation:
we get here volume of space to be filled with aggregate that is
volume = 2000 × 48 × 0.5
volume = 48000 ft³
now filling space with aggregate of the density that is
density = 0.95 × 119.7
density = 113.72 lb/ft³
and dry weight of this aggregate is
dry weight = 48000 × 113.72
dry weight = 5458320 lbs
we consider here percent moisture is by weigh
so weight of moisture in aggregate will be
weight of moisture = 0.031 × 5458320
weight of moisture = 169208 lbs
so here total weight of aggregate is
total weight of aggregate = 5458320 + 169208
total weight of aggregate = 5627528 lbs = 2814 tons