Answer:
its a view point for auto cad
Explanation:
from my knowlege in IED we learned about it as a way of sing how an object would look in inventor or auto CAD
Answer:
a) 84.034°C
b) 92.56°C
c) ≈ 88 watts
Explanation:
Thickness of aluminum alloy fin = 12 mm
width = 10 mm
length = 50 mm
Ambient air temperature = 22°C
Temperature of aluminum alloy is maintained at 120°C
<u>a) Determine temperature at end of fin</u>
m = √ hp/Ka
= √( 140*2 ) / ( 12 * 10^-3 * 55 )
= √ 280 / 0.66 = 20.60
Attached below is the remaining answers
Answer:
Half-wave rectifier converts an AC signal into a DC signal. It's called a half-wave because it only rectify the positive part of an AC signal.
AC Signal = An electrical signal that alternates between positive and negative voltage.
DC Signal = An electrical signal that only has positive voltage.
Rectify = A fancy word for converting something.
Adding a capacitor helps the positive part of the signal stay on longer. This work because the capacitor stores energy kinda like a battery. During the negative part of the AC signal, the energy stored in the capacitor will be drained and used, then the cycle repeats.
The load resistor is just there to prevent a short circuit from happening.
Answer:
maximum stress is 2872.28 MPa
Explanation:
given data
radius of curvature = 3 ×
mm
crack length = 5.5 ×
mm
tensile stress = 150 MPa
to find out
maximum stress
solution
we know that maximum stress formula that is express as
......................1
here σo is applied stress and a is half of internal crack and t is radius of curvature of tip of internal crack
so put here all value in equation 1 we get
σm = 2872.28 MPa
so maximum stress is 2872.28 MPa
Answer: Rupture strength
Explanation: Rupture strength is the strength of a material that is bearable till the point before the breakage by the tensile strength applied on it. This term is mentioned when there is a sort of deformation in the material due to tension.So, rupture will occur before whenever there are chances of failing and the material is still able to bear stresses before failing.