Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:
From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.
Answer:
The entropy change of the air is
Explanation:
is unknown
we can apply the following expression to find
now substitute
To find entropy change of the air we can apply the ideal gas relationship
Δ
Δ
Δ
Answer:
Either D or C
Both of these masks are used for dust, but since half masks are generally cheaper and easier to use, I'd go with C.
If this is correct, I'd appreciate a brainliest.
Answer:
(a) the velocity ratio of the machine (V.R) = 1
(b) The mechanical advantage of the machine (M.A) = 0.833
(c) The efficiency of the machine (E) = 83.3 %
Explanation:
Given;
load lifted by the pulley, L = 400 N
effort applied in lifting the, E = 480 N
distance moved by the effort, d = 5 m
(a) the velocity ratio of the machine (V.R);
since the effort applied moved downwards through a distance of d, the load will also move upwards through an equal distance 'd'.
V.R = distance moved by effort / distance moved by the load
V.R = 5/5 = 1
(b) The mechanical advantage of the machine (M.A);
M.A = L/E
M.A = 400 / 480
M.A = 0.833
(c) The efficiency of the machine (E);