Answer:
1.63
Explanation:
If you have the following options:
<u>A. 1.63</u>
B. 1.50
C. 1.49
D. 1.33
E. 1.02
Answer:
Charge Z can be placed at <em>x</em> = -2.7 m or at <em>x</em> = 0.27 m.
Explanation:
The Coulomb force between two charges,
and
, separated by a distance,
, is given

<em>k</em> is a constant.
For the charge Z to be at equilibrium, the force exerted on it by charge X must be equal and opposite to the force exerted on it by charge Y.
It is to be placed along the <em>x</em>-axis. Hence, it is on the same line as charges X and Y.
Let the charge on Z be <em>Q</em>. It is positive.
Let the distance from charge X be <em>x m.</em> Then the distance from charge Y will be (0.60 - <em>x</em>) m.
Force due to charge X

Force due to charge Y

Since both forces are equal and opposite,







Applying the quadratic formula,

or 
Charge Z can be placed at <em>x</em> = -2.7 m or at <em>x</em> = 0.27 m
The speed of the wave in the string is 83.4 m/s
Explanation:
For a standing wave in a string, the speed of the wave is given by the equation:

where
L is the length of the string
T is the tension in the string
m is the mass of the string
In this problem, we have:
L = 0.72 m
m = 4.2 g = 0.0042 kg
T = 84.1 N
Solving the equation, we find the speed of the wave:

Learn more about waves:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
A, yes because the plane is using air resistance and acceleration is increasing while it goes up. Although you don’t know speed, still yes.