Answer:
<u>We are given:</u>
initial velocity (u) = 20m/s
acceleration (a) = 4 m/s²
time (t) = 8 seconds
displacement (s) = s m
<u />
<u>Solving for Displacement:</u>
From the seconds equation of motion:
s = ut + 1/2 * at²
replacing the variables
s = 20(8) + 1/2 * (4)*(8)*(8)
s = 160 + 128
s = 288 m
Answer:
9) a = 25 [m/s^2], t = 4 [s]
10) a = 0.0875 [m/s^2], t = 34.3 [s]
11) t = 32 [s]
Explanation:
To solve this problem we must use kinematics equations. In this way we have:
9)
a)
where:
Vf = final velocity = 0
Vi = initial velocity = 100 [m/s]
a = acceleration [m/s^2]
x = distance = 200 [m]
Note: the final speed is zero, as the car stops completely when it stops. The negative sign of the equation means that the car loses speed or slows down as it stops.
0 = (100)^2 - (2*a*200)
a = 25 [m/s^2]
b)
Now using the following equation:
0 = 100 - (25*t)
t = 4 [s]
10)
a)
To solve this problem we must use kinematics equations. In this way we have:
Note: The positive sign of the equation means that the car increases his speed.
5^2 = 2^2 + 2*a*(125 - 5)
25 - 4 = 2*a* (120)
a = 0.0875 [m/s^2]
b)
Now using the following equation:
5 = 2 + 0.0875*t
3 = 0.0875*t
t = 34.3 [s]
11)
To solve this problem we must use kinematics equations. In this way we have:
10^2 = 2^2 + 2*a*(200 - 10)
100 - 4 = 2*a* (190)
a = 0.25 [m/s^2]
Now using the following equation:
10 = 2 + 0.25*t
8 = 0.25*t
t = 32 [s]
Answer:
Both conduction and convection require matter to transfer heat. ... Convection occurs when warmer areas of a liquid or gas rise to cooler areas in the liquid or gas. Cooler liquid or gas then takes the place of the warmer areas which have risen higher. This results in a continuous circulation pattern.
Explanation:
HOPE THIS HELPS!!!
- m1=1500kg
- m_2=3000kg
- v_1=5m/s
- v_2=7m/s
Using law of conservation of momentum