Use Charles' Law: V1/T1 = V2/T2. We assume the pressure and mass of the helium is constant. The units for temperature must be in Kelvin to use this equation (x °C = x + 273.15 K).
We want to solve for the new volume after the temperature is increased from 25 °C (298.15 K) to 55 °C (328.15 K). Since the volume and temperature of a gas at a constant pressure are directly proportional to each other, we should expect the new volume of the balloon to be greater than the initial 45 L.
Rearranging Charles' Law to solve for V2, we get V2 = V1T2/T1.
(45 L)(328.15 K)/(298.15 K) = 49.5 ≈ 50 L (if we're considering sig figs).
Hiiiiiiiiiiiiiiiiiiiiiikiiiii
Answer:
Explanation:
Given the details, we can say that
Pure methanol is a volatile solvent as the vapour pressure has a high value. This means that methanol - methanol intermolecular forces are weak in comparisson to water - water forces. When having about 30% of water in a methanol mixture, the mixture Pv decreased, showing that it is not a volatile mixture, so then there are strong intermolecular interactions between methanol - water, part of it due to the hydrogen bonds.
230 in scientific notation is:
2.3 x 10^2