Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.
<em>Another key factor that determines a star's colour is its temperature. As stars become hotter, the overall radiated energy increases, and the peak of the curve changes to shorter wavelengths. To put it another way, when a star heats up, the light it produces moves toward the blue end of the spectrum.</em>
Answer:
B.The linear velocity of the gears is the same. The linear velocity is 432π centimeters per minute.
Explanation:
As we know that the small gear completes 24 revolutions in 20 seconds
so the angular speed of the smaller gear is given as


Now we know that the tangential speed of the chain is given as

so we have



Since both gears are connected by same chain so both have same linear speed and hence correct answer will be
B.The linear velocity of the gears is the same. The linear velocity is 432π centimeters per minute.
Answer:
355 m/s
Explanation:
Distance = 605 km
Initial speed =
= 284 m/s
Final velocity =
= 426 m/s
Average speed = ?
There is two method two find average speed. In first method, using 3rd equation of motion, we find acceleration.

Then using first equation of motion, we find time

Then using the formula of average velocity, we find average velocity

Second method is very simple


355 m/s
Hey there!
Answer: Glaciers
Water near the poles would most likely be stored as glaciers. Glaciers are slow moving rivers that are a buildup of ice and snow.
Thank you!