1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
coldgirl [10]
3 years ago
13

A .5 kg air puck moves to the right at 3 m/s, colliding with a 1.5kg air puck that is moving to the left at 1.5 m/s.

Physics
1 answer:
Bas_tet [7]3 years ago
5 0

Answer:

Explanation:

Total momentum of the system before the collision

.5 x 3 - 1.5 x 1.5 = -0.75 kg m/s towards the left

If v be the velocity of the stuck pucks

momentum after the collision = 2 v

Applying conservation of momentum

2 v = -  .75

v =  - .375 m /s

Let after the collision v be the velocity of .5 kg puck

total momentum after the collision

.5 v + 1.5 x .231 = .5v +.3465

Applying conservation of momentum law

.5 v +.3465 = - .75

v = - 2.193 m/s

2 ) To verify whether the collision is elastic or not , we verify whether the kinetic energy is conserved or not.

Kinetic energy before the collision

= 2.25 + 1.6875

=3.9375 J

kinetic energy after the collision

= .04 + 1.2 =1.24 J

So kinetic energy is not conserved . Hence collision is not elastic.

3 ) Change in the momentum of .5 kg

1.5 - (-1.0965 )

= 2.5965

Average force applied = change in momentum / time

= 2.5965 / 25 x 10⁻³

= 103.86 N

You might be interested in
Acceleration always involves a change in
Scrat [10]
Velocity. Since velocity consists of a speed and a direction, acceleration is a change in speed, or direction, or both.
5 0
3 years ago
The power lines are at a high potential relative to the ground, so there is an electric field between the power lines and the gr
Amanda [17]

Answer:

The tube should be held vertically and perpendicular to the ground.

Explanation:

Answer: The tube should be held vertically and perpendicular to the ground. The reason is as follows:

Reasoning:

The power lines are parallel to the ground hence, their electric field will be perpendicular to the ground and equipotential surface will be cylindrical.

Hence, if you will put fluorescent tube parallel to the ground then both the ends of the tube will lie on the same equipotential surface and the potential difference will be zero.

So, to maximize the potential the ends of the tube must be on different equipotential surfaces. The surface which is near to the power line has high potential value and the surface which is farther from the line has lower potential value.

hence, to maximize the potential difference, the tube must be placed perpendicular to the ground.

6 0
2 years ago
A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 13.0 cm , giving it a ch
Leokris [45]

a) Electric field inside the paint layer: zero

b) Electric field just outside the paint layer: -3.62\cdot 10^7 N/C

c) Electric field 8.00 cm outside the paint layer: -7.27\cdot 10^7 N/C

Explanation:

a)

We can find the electric field inside the paint layer by applying Gauss Law: the total flux of the electric field through a gaussian surface is equal to the charge contained within the surface divided by the vacuum permittivity, mathematically:

\int EdS = \frac{q}{\epsilon_0}

where

E is the electric field

dS is the element of surface

q is the charge within the gaussian surface

\epsilon_0 = 8.85\cdot 10^{-12}F/m is the vacuum permittivity

Here we want to find the electric field just inside the paint layer, so we take a sphere of radius r as Gaussian surface, where

R = 6.5 cm = 0.065 m is the radius of the plastic sphere (half the diameter)

By taking the sphere of radius r, we note that the net charge inside this sphere is zero, therefore

q=0

So we have

\int E dS=0

which means that the electric field inside the paint layer is zero.

b)

Now we want to find the electric field just outside the paint layer: therefore, we take a Gaussian sphere of radius

r=R=0.065 m

The area of the surface is

A=4\pi R^2

And since the electric field is perpendicular to the surface at any point, Gauss Law becomes

E\cdot 4\pi R^2 = \frac{q}{\epsilon_0}

The charge included within the sphere in this case is the charge on the paint layer, therefore

q=-17.0\mu C=-17.0\cdot 10^{-6}C

So, the electric field is:

E=\frac{q}{4\pi \epsilon_0 R^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.065)^2}=-3.62\cdot 10^7 N/C

where the negative sign means the direction of the field is inward, since the charge is negative.

c)

Here we want to calculate the electric field 8.00 cm outside the surface of the paint layer.

Therefore, we have to take a Gaussian sphere of radius:

r=8.00 cm + R = 8.00 + 6.50 = 14.5 cm = 0.145 m

Gauss theorem this time becomes

E\cdot 4\pi r^2 = \frac{q}{\epsilon_0}

And the charge included within the sphere is again the charge on the paint layer,

q=-17.0\mu C=-17.0\cdot 10^{-6}C

Therefore, the electric field is

E=\frac{q}{4\pi \epsilon_0 r^2}=\frac{-17.0\cdot 10^{-6}}{4\pi(8.85\cdot 10^{-12})(0.145)^2}=-7.27\cdot 10^7 N/C

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

5 0
3 years ago
TRUE OR FALSE: In single-slit diffraction, the central band gets thinner as the width of the slit increases.
olganol [36]

Answer:

Explanation:

True

4 0
2 years ago
Read 2 more answers
A 8 g object displaces 50ml of water, what is its specific gravity?
Igoryamba

Answer:

8.3

Explanation:

thats what i think sorry if its wrong im ok at doing this stuff

4 0
2 years ago
Read 2 more answers
Other questions:
  • The center of a long frictionless rod is pivoted at the origin and the rod is forced to rotate at a constant angular velocity Q
    6·1 answer
  • Alexandra knows that the atomic number of the element potassium, K, is 19. She also knows that one particular isotope of potassi
    9·1 answer
  • A box with a mass of 100.0 kg slides down a ramp with a 50 degree angle. What is the weight of the box? N What is the value of t
    12·1 answer
  • Estimate the inductance L of a coil that is 12 cm long, made of about 235 copper-wire turns and a diameter of about 1.7 cm. Show
    6·1 answer
  • In the process of making a rainbow, light enters the water droplet at location 1 and exits at location 3. Which
    10·1 answer
  • Which of the following is the best thermal conductor?
    9·1 answer
  • If a 4 engine jet accelerates down a runway at 8.7 m/s^2, Suppose now that all 4 engins are operational on the jet from the prev
    13·1 answer
  • The lawn sprinkler consists of four arms that rotate in the horizontal plane. The diameter of each nozzle is 8 mm, and the water
    5·1 answer
  • Ls -2 a solution of 4x +3= -5?.<br>​
    8·1 answer
  • What is one advantage of using primary sources when doing research on an
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!