Answer:
The correct answer is: 0°C + 0°C = 32°F
Explanation:
We need to remember the conversion equation from Celsius to Fahrenheit:

In our case x = 0, then y will be:


Now 0°C + 0°C is just 0°C because if we add a body at a certain temperature to another body with the same temperature the total temperature will the same.
Then, knowing that 0°C = 32°F we can conclude that:

I hope it helps you!
So, the time that taken for the astronaut to fall to the surface of the moon is <u>2.5 s.</u>
<h3>Introduction</h3>
Hi ! In this question, I will help you. In this question, you will learn about the fall time of the free fall motion. Free fall is a downward vertical motion without being preceded by an initial velocity. When moving in free fall, the time required can be calculated by the following equation:



With the following condition :
- t = interval of the time (s)
- h = height or any other displacement at vertical line (m)
- g = acceleration of the gravity (m/s²)
<h3>Problem Solving</h3>
We know that :
- h = height = 5.00 m
- g = acceleration of the gravity = 1.6 m/s²
What was asked :
- t = interval of the time = ... s
Step by step :




<h3>Conclusion</h3>
So, the time that taken for the astronaut to fall to the surface of the moon is 2.5 s.
<h3>See More</h3>
Answer:
1.127,56,000m
2. 347,600,000
3. 384,000
4. 200000000
5. 16,000,000cm
6. 36,000,000cm
7. 125,000m long, 400m deep, 1,500m wide
8. 11.18km/sec
9. 5,400,000
10. 2g
11. 1,200 mg to 2700 mg
12. 158000 kg
13. 450000000 mg
14. 23,000g to 90,000g
15. 40,000 ML
16. 1,000 ML
17. 26,600 KL
18. 1,558,000 L
19. 60 ML
20. 0.947
Answer:
convection currents is the answer
Answer:
The current is changing at the rate of 0.20 A/s
Explanation:
Given;
inductance of the inductor, L = 5.0-H
current in the inductor, I = 3.0 A
Energy stored in the inductor at the given instant, E = 3.0 J/s
The energy stored in inductor is given as;
E = ¹/₂LI²
E = ¹/₂(5)(3)²
E = 22.5 J/s
This energy is increased by 3.0 J/s
E = 22.5 J/s + 3.0 J/s = 25.5 J/s
Determine the new current at this given energy;
25.5 = ¹/₂LI²
25.5 = ¹/₂(5)(I²)
25.5 = 2.5I²
I² = 25.5 / 2.5
I² = 10.2
I = √10.2
I = 3.194 A/s
The rate at which the current is changing is the difference between the final current and the initial current in the inductor.
= 3.194 A/s - 3.0 A/s
= 0.194 A/s
≅0.20 A/s
Therefore, the current is changing at the rate of 0.20 A/s.