Answer:
Without this slack, a locomotive might simply sit still and spin its wheels. The loose coupling enables a longer time for the entire train to gain momentum, requiring less force of the locomotive wheels against the track. In this way, the overall required impulse is broken into a series of smaller impulses. (This loose coupling can be very important for braking as well).
Explanation:
Johannes Kepler- he did it by observing the ‘Tycho Brahe’. His 3rd law was published 10 years later to his first two laws.
Answer:
Explanation:
Let v be the velocity acquired by electron in electric field
V q = 1/2 m v²
V is potential difference applied on charge q , m is mass of charge , v is velocity acquired
2400 x 1.6 x 10⁻¹⁹ = .5 x 9.1 x 10⁻³¹ x v²
v² = 844 x 10¹²
v = 29.05 x 10⁶ m /s
Maximum force will be exerted on moving electron when it moves perpendicular to magnetic field .
Maximum force = Bqv , where B is magnetic field , q is charge on electron and v is velocity of electron
= 1.7 x 1.6 x 10⁻¹⁹ x 29.05 x 10⁶
= 79.02 x 10⁻¹³ N .
Minimum force will be zero when electron moves along the direction of magnetic field .
To develop this problem it is necessary to apply the concept of Frequency based on speed and wavelength.
According to the definition the frequency can be expressed as

Where,
v = Velocity
Wavelength
Our value are given by,
v = 345m/s

Replacing


Therefore the frequency of the tuning fork is 547.61Hz
The answer is A
Explanation:
Vacuuming doesn’t involve a lot of physical movements.