Assuming that the densities of the gases are:
density of air, ρ1 = 1.29 kg / m^3
density of helium, ρ2 = 0.179 kg / m^3
Since buoyant force and weight are two forces that are in
opposite direction (buoyant force is up while weight is down), therefore equate
the two:
buoyant force = weight
m g = (800 + m1) g
where m is the mass of buoyancy, g is gravity and m1 is
the maximum mass of the cargo
m = 800 + m1
We know that mass is also expressed as:
m = ρ V
where ρ is density of gas and V is volume of the sphere
Since there are two interacting gases here, therefore m
is:
m = (ρ1 – ρ2) V
Therefore:
(ρ1 – ρ2) V = 800 + m1
(1.29 – 0.179) (4π/3) (8.35m)^3 = 800 + m1
2709.33 = 800 + m1
m1 = 1,909.33 kg
Answer:
the work required for the loading of second dart is 64 times greater as work required for loading the first dart.
Explanation:
k = spring constant of the spring loaded toy dart gun
x₁ = compression of spring to load the first dart = d
x₂ = compression of spring to load the second dart = 8 d
E₁ = Work required to load the first dart
E₂ = Work required to load the second dart
Work required to load the first dart is given as
E₁ = (0.5) k x₁² = (0.5) k d²
Work required to load the second dart is given as
E₂ = (0.5) k x₂² = (0.5) k (8d)² = (64) (0.5) k d²
E₂ = 64 E₁
So the work required for the loading of second dart is 64 times greater as work required for loading the first dart
Answer:
1800 m/s
Explanation:
The equation is v = fλ
λ= 0.75
f = 2400 Hz
V = 2400 × 0.75
V = 1800 m/s
[ you did not give units for wavelength, I assumed it would be m/s]
Measurement means weight, size, length, or capacity of something.
A :-) for this question , we should apply
a = v - u by t
Given - u = 4.77 m/s
v = 23.5 m/s
t = 5.18 m/s
Solution -
a = v - u by t
a = 23.5 - 4.77
a = 28.27 m/s^2
.:. The acceleration is 28.27 m/s^2