Answer: 586.60N/m
Explanation:
In this scenario, the elastic potential energy of the spring is converted into potential energy.
0.5*K*x^2 = mgh
Thus K = 2mgh/x^2
=(2*2.90*10^-2*9.8*7.23)/(8.37*10^-2)^2
=586.599
Therefore K = 586.60N/m
Answer:
v = 8.65 m/s
Explanation:
Given that,
Distance covered by the doge, d = 45 m
Time taken, t = 5.2 s
We need to find its average speed. The total distance covered divided by the total time taken is called the average speed of an object. So,

So, the average speed is 8.65 m/s.
For the work-energy theorem, the work needed to stop the bus is equal to its variation of kinetic energy:

where
W is the work
Kf is the final kinetic energy of the bus
Ki is the initial kinetic energy of the bus
Since the bus comes at rest, its final kinetic energy is zero:

, so the work done by the brakes to stop the bus is

And the work done is negative, because the force applied by the brake is in the opposite direction to that of the bus motion.
Answer:
<h3>B. 19miles</h3>
Explanation:
If Freddy drives 4 miles east to his friend's house. He then travels 9 more miles east to the supermarket. Finally on his way back home he out of gas 6 miles after leaving the supermarket, the distance travel by fred will be the sup of all the distances he covered throughout the journey.
Distance covered by fred = 4miles + 9miles + 6miles
Distance covered by fred = 13miles + 6miles
Distance covered by fred = 19miles
Answer:
Power = 20 Watts
Explanation:
Given the following data;
Voltage = 100 V
Resistance = 500 Ohms
To find the power that is required to light a lightbulb;
Mathematically, power can be calculated using the formula;

Substituting into the formula, we have;


Power = 20 Watts