Answer:
1. 6.672 kPa
2. 49.05 mm of mercury
Explanation:
h = 6400 m
Absolute pressure, p = 46 kPa = 46000 Pa
density of air, d = 0.823 kg/m^3
density of mercury, D = 13600 kg/m^3
(a) Absolute pressure = Atmospheric pressure + pressure due to height
46000 = Atmospheric pressure + h x d x g
Atmospheric pressure = 46000 - 6400 x 0.823 x 10 = 6672 Pa = 6.672 kPa
(b) To convert the pressure into mercury pressure
Atmospheric pressure = H x D x g
Where, H is the height of mercury, D be the density of mercury, g be the acceleration due to gravity
6672 = H x 13600 x 10
H = 0.04905 m
H = 49.05 mm of mercury
Answer:
7200N
Explanation:
Centripetal force is directly proportional to the product of the mass and the square of the velocity and inversely proportional to the radius given.
Answer:
When there is a change in magnetic flux linkage through a loop of wire, an electromotive force is induced in the loop, according to the Faraday-Newmann-Lenz Law:

where
N is the number of turns in the loop
is the change in magnetic flux through the loop
is the time elapsed
The negative sign in the formula represents Lenz's Law, and tells us about the direction of the electromotive force.
In fact, the negative sign means that the direction of the induced emf is such that to oppose to the change in the magnetic flux that originated the induced emf.
This is a consequence of the law of conservation of energy: no energy can be created out of nowhere. In fact, when the emf is induced in the loop, electrical energy appears in the circuit; however, this electric energy cannot come out of nowhere. Instead, it is just "created" from the transformation of some other form of energy (for instance, the mechanical energy that is used to move the loop in the magnetic field, and changing its magnetic flux).
The negative sign in Lenz's Law tells exactly this: the direction of the induced emf is such that it opposes the initial change in magnetic flux that generated the induced emf, so that overall the total energy is conserved.