1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
4 years ago
14

The land between two normal faults moves upward to form a

Physics
2 answers:
ahrayia [7]4 years ago
6 0

THE ANSWER IS D .................................

Leya [2.2K]4 years ago
5 0
<span>The land between two normal faults moves upward to form a

Answer:D</span><span>
fault-block mountain.</span>
You might be interested in
When water changes into vapor this is called?
Scorpion4ik [409]

When water changes into vapor, it is called evaporation.  BONUS:  This is formed by the boiling point of water, which is 230°F (Fahrenheit) or 110°C (Celsius).

4 0
3 years ago
An ore car of mass 39000 kg starts from rest and rolls downhill on tracks from a mine. At the end of the tracks, 25 m lower vert
Musya8 [376]

Answer:

x = 5.79 m

Explanation:

given,

mass of the car = 39000 Kg

spring constant = 5.7 x 10⁵ N/m

acceleration due to gravity = 9.8 m/s²

height of the track = 25 m

length of spring compressed = ?

using conservation of energy

potential energy is converted into spring energy

m g h = \dfrac{1}{2}kx^2

x =\sqrt{\dfrac{2 m g h}{k}}

x =\sqrt{\dfrac{2\times 39000 \times 9.8 \times 25}{5.7 \times 10^{5}}}

x =\sqrt{33.5263}

x = 5.79 m

the spring is compressed to x = 5.79 m to stop the car.

3 0
3 years ago
During the experiment if you could double the breakaway magnetic force with all other quantities left unchanged, what is the new
sergiy2304 [10]
There are some missing information in the question.
However, since you are talking about magnetic force, I think you refer to the Lorentz force. When a particle of charge q and velocity v is immersed in a magnetic field of intensity B, the force acting on the particle is:
F=qvBsin\theta
where \theta is the angle between the magnetic field and the direction of the particle.
Therefore, if force F is doubled, then also the velocity v must be double of its initial value:
v=2v_0
6 0
3 years ago
When electrons are lost, a blank ion is formed​
Serhud [2]

Answer:

Positive ions, or cations.

3 0
3 years ago
4) A satellite, mass m, is in circular orbit (radius r) around the earth, which has mass ME and radius Re. The value of r is lar
defon
<h2>Answers:</h2>

(a) The kinetic energy of a body is that energy it possesses due to its movement and is defined as:

K=\frac{1}{2}m{V}{2}     (1)

Where m is the mass of the body and V its velocity.

In this specific case of the satellite, its kinetic energy K_m taking into account its mass m is:

K_{m}=\frac{1}{2}m{V}^{2}     (2)

On the other hand, the velocity of a satellite describing a circular orbit is constant and defined by the following expression:

V=\sqrt{G\frac{ME}{r}}     (3)

Where G is the gravity constant, ME the mass of the Earth and r the radius of the orbit <u>(measured from the center of the Earth to the satellite). </u>

Now, if we substitute the value of V from equation (3) on equation (2), we will have the final expression of the kinetic energy of this satellite:

K_{m}=\frac{1}{2}m{\sqrt{G\frac{ME}{r}}}^{2}     (4)

Finally:

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)  >>>>This is the kinetic energy of the satellite

(b) According to Kepler’s 2nd Law applied in the case of a circular orbit, its Period T is defined as:

T=2\pi\sqrt{\frac{r^{3}}{\mu}}     (6)

Where \mu is a constant and is equal to GME. So, this equation in these terms is written as:

T=2\pi\sqrt{\frac{r^{3}}{GME}}     (7)

As we can see, <u>the Period of the orbit does not depend on the mass of the satellite </u>m, it depends on the mass of the greater body (the Earth in this case) ME, the radius of the orbit and the gravity constant.

(c) The gravitational force described by the law of gravity is a central force and therefore is <u>a conservative force</u>. This means:

1. The work performed by a gravitational force to move a body from a position A to a position B <u>only depends on these positions and not on the path followed to get from A to B. </u>

2. When the path that the body follows between A and B is a c<u>losed path or cycle</u> (as this case with a <u>circular orbit</u>), <u>the gravitational work is null or zero</u>.

<h2>This is because the gravity force that maintains an object in circular motion is a centripetal force, that is, <u>it always acts perpendicular to the movement</u>. </h2>

Then, in the case of the satellite orbiting the Earth in a circular orbit, its movement will always be perpendicular to the gravity force that attracts it to the planet, at each point of its path.

(d)  The total Mechanical Energy E of a body is the sum of its Kinetic Energy K and its Potential Energy P:

E=K+P     (8)

But in this specific case of the circular orbit, its kinetic energy will be expresses as calculated in the first answer (equation 5):

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)

And its potential energy due to the Earth gravitational field as:

P_{m}=-G\frac{mME}{r}     (9)

This energy is negative by definition.

So, the total mechanical energy of the orbit, also called the Orbital Energy is:

E=\frac{1}{2}Gm\frac{ME}{r}+(- G\frac{mME}{r})      (10)

Solving equation (10) we finally have the Orbital Energy:

E=-\frac{1}{2}mME\frac{G}{r}     (11)

At this point, it is necessary to clarify that a satellite (or any other celestial body) orbiting another massive body, can describe one of these types of orbits depending on its Orbital Total Mechanical Energy E:

-When E=0:

We are talking about an <u>open orbit</u> in which the satellite escapes from the attraction of the planet's gravitational field. The shape of its trajectory is a parabola, fulfilling the following condition:

K_{m}=-P_{m}

Such is the case of some comets in the solar system.

-When E>0:

We are also talking about <u>open orbits</u>, which are hyperbolic, being K_{m}>P_{m}

<h2>-When E: >>>><u>This case</u></h2>

We are talking about <u>closed orbits</u>, that is, the satellite will always be "linked" to the gravitational field of the planet and will describe an orbit that periodically repeats with a shape determined by the relationship between its kinetic and potential energy, as follows:

-Elliptical orbit: Although E is constant, K_m and P_m are changing along the trajectory .

-Circular orbit: When at all times both the kinetic energy K_m and the potential P_m remain constant, resulting in a total mechanical energy E as the one obtained in this exercise. This means that the speed is constant too and <u>is the explanation of why this Energy has a negative sign. </u>

3 0
4 years ago
Other questions:
  • How many normal modes of oscillation or natural frequencies does each if the following have: (
    15·1 answer
  • The two days of the year on which neither hemisphere is tilted toward or away from the sun are called
    13·2 answers
  • The primary job of a(n) ______ on a receiver is to capture modified radio waves.
    12·2 answers
  • Please help me with this science question
    14·1 answer
  • Why doesnt a ball roll on forever after being kicked at a soccer game
    13·1 answer
  • Cars A and B are racing each other along the same straight road in the following manner: Car A has a head start and is a distanc
    10·1 answer
  • Two 0.20-kg balls, moving at 4 m/s east, strike a wall. Ball A bounces backwards at the same speed. Ball B stops. Which statemen
    13·1 answer
  • What are the two factors that affect the gravitational pull between two objects?
    6·1 answer
  • Ana wonders how light can affect a mystery material. The table below shows what happens when different types of light hit the my
    10·1 answer
  • There is a filing cabinent that is 52 in. tall and 15 in. wide. The center of gravity of the cabinet is right at the center. To
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!