1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blsea [12.9K]
3 years ago
13

The heating of the filament is what causes the light production (photon emission), and heating is caused by the current in the l

ight bulb. Why isn’t it a good idea to drive light bulbs using constant current sources rather than constant voltage? (Hint: think about the answer to Question 4).
Physics
1 answer:
alexira [117]3 years ago
8 0

Answer:

explained

Explanation:

Yes, the heating of filament is what causes the light production (photon emission), and this heating is caused because of current in the light bulb

(H= i^2*R*t i=current, H= heat, t= time and R= resistance).But using constant current source is not a good idea because in constant current source resistance is very low that can cause short circuit and ultimately fusing it. Whereas in constant voltage source current adjusts itself and prevents fusing because of high resistance in the circuit.

You might be interested in
1.Calculate the energy transferred by a 12V hairdryer, running on a current of 0.50A, that is left on for 8.0 minutes.
CaHeK987 [17]

Answer:

1. Energy = 2880 Joules.

2. Energy = 60 Joules.

3. Quantity of charge = 120 Coulombs.

Explanation:

Given the following data;

1. Voltage = 12 Volts

Current = 0.5 Amps

Time, t = 8 mins to seconds = 8 * 60 = 480 seconds

To find the energy;

Power = current * voltage

Power = 12 * 0.5

Power = 6 Watts

Next, we find the energy transferred;

Energy = power * time

Energy = 6 * 480

Energy = 2880 Joules

2. Charge, Q = 4 coulombs

Potential difference, p.d = 15V

To find the total energy transferred;

Energy = Q * p.d

Energy = 4 * 15

Energy = 60 Joules

3. Voltage = 6 Volts

Current = 1 Amps

Time = 2 minutes to seconds = 2 * 60 = 120 seconds

To find the quantity of charge;

Quantity of charge = current * time

Quantity of charge = 1 * 120

Quantity of charge = 120 Coulombs

8 0
3 years ago
A child’s toy that is made to shoot ping pong balls consists of a tube, a spring (k = 18 N/m) and a catch for the spring that ca
UkoKoshka [18]

Answer:

The height is 3.1m

Explanation:

Here we have a conservation of energy problem, we have a conversion form eslastic potencial  energy to gravitational potencial energy, so:

E_e=\frac{1}{2}K*x^2\\E_e=\frac{1}{2}18N/m*(9.5*10^{-2}m)^2\\E_e=0.081J

then we have only gravitational potencial energy when the ball is at its maximun height.

E_g=m*g*h

because all the energy was transformed Eg=Ee

h=\frac{0.081J}{9.8m/s^2*m}

searching the web, the mass of a ping pong ball is 2.7 gr in average. so:

h=\frac{0.081J}{9.8m/s^2*(2.7*10^{-3}kg)}\\h=3.1m

6 0
3 years ago
If the kinetic and potential energy in a system are equal, then the potential energy increases. What happens as a result?
andrew11 [14]

Answer:

energy of motion decrease

Explanation:

yes

7 0
2 years ago
A crate with a mass of 110 kg glides through a space station with a speed of 4.0 m/s. An astronaut speeds it up by pushing on it
Darina [25.2K]

Answer:

The final speed of the crate after the astronaut push to slow it down is 4.50 m/s

Explanation:

<u>Given:  </u>

The crate has mass m = 110 kg and an initial speed vi = 4 m/s.  

<u>Solution  </u>

We are asked to determine the final speed of the crate. We could apply the steps for energy principle update form as next  

Ef=Ei+W                                                 (1)

Where Ef and Ei are the find and initial energies of the crate (system) respectively. While W is the work done by the astronaut (surrounding).  

The system has two kinds of energy, the kinetic energy which associated with its motion and the rest energy where it has zero speed. The summation of both energies called the particle energy. So, equation (1) will be in the form  

(Kf + mc^2) = (KJ+ mc^2)                       (2)  

Where m is the mass of crate, c is the speed of light which equals 3 x 10^8 m/s and the term mc^2 represents the energy at rest and the term K is the kinetic energy.  

In this case, the rest energy doesn't change so we can cancel the rest energy in both sides and substitute with the approximate expression of the kinetic energy of the crate at low speeds where K = 1/2 mv^2 and equation (2) will be in the form

(1/2mvf^2+mc^2)=(1/2mvi^2 +mc^2)+W

1/2mvf^2=1/2mvi^2+W                              (3)

Now we want to calculate the work done on the crate to complete our calculations. Work is the amount of energy transfer between a source of an applied force and the object that experiences this force and equals the force times the displacement of the object. Therefore, the total work done will be given by  

W = FΔr                                                      (4)  

Where F is the force applied by the astronaut and equals 190 N and Δr is the displacement of the crate and equals 6 m. Now we can plug our values for F and Δr to get the work done by the astronaut  

W = F Δr= (190N)(6 m) = 1140 J  

Now we can plug our values for vi, m and W into equation (3) to get the final speed of the crate  

1/2mvf^2=1/2mvi^2+W

vf=5.82 m/s

This is the final speed of the first push when the astronaut applies a positive work done. Then, in the second push, he applies a negative work done on the crate to slow down its speed. Hence, in this case, we could consider the initial speed of the second process to be the final speed of the first process. So,  

vi' = vf

In this case, we will apply equation (3) for the second process to be in the

1/2mvf^2=1/2mvi'^2+W'                                 (3*)

The force in the second process is F = 170 N and the displacement is 4 m. The force and the displacement are in the opposite direction, hence the work done is negative and will be calculated by  

W'= —F Δr = —(170N)(4 m)= —680J

Now we can plug our values for vi' , m and W' into equation (3*) to get the final speed of the crate  

1/2mvf'^2=1/2mvi'^2+W'

  vf'=4.50 m/s

The final speed of the crate after the astronaut push to slow it down is 4.50 m/s

7 0
3 years ago
Is energy conserved during a fission/fusion reaction?
avanturin [10]

Answer:

No,but it can be changed into other forms.

3 0
3 years ago
Other questions:
  • Fifteen identical particles have various speeds: one has a speed of 2.00 m/s, two have speeds of 3.00 m/s, three have speeds 5.0
    5·1 answer
  • To practice Problem-Solving Strategy 22.1 for electric force problems. Two charged particles, with charges q1=qq1=q and q2=4qq2=
    11·1 answer
  • What method has detected the most extrasolar planets so far?
    6·1 answer
  • What do you mean by magnitude of an electric field due to a point charge. State its SI unit.
    12·1 answer
  • Two workers are sliding 490 kg crate across the floor. One worker pushes forward on the crate with a force of 410 N while the ot
    10·2 answers
  • If two automobiles have the same velocity do they have the same acceleration?
    10·2 answers
  • What is kinetic energy of a 7.26kg bowling ball that is rolling at a speed of 2m/s?
    5·1 answer
  • What effect would a barrier island have on the shoreline of the mainland?
    6·1 answer
  • 1. How does speed affect the amount of kinetic energy in a moving object? Explain how you
    10·1 answer
  • What is the magnification of an object that is 4.15 m in front of a camera that has an image position of 5.0 cm?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!