Answer:

Explanation:
Given that,
Emf, V = 22 mV
Number of turns in the coil us 519
Rate of change of current is 10 A/s.
We need to find the magnetic flux through each turn of the coil at an instant when the current is 3.70 A.
Let's find the inductance first. So,

We have,
,
is magnetic flux

So, the magnetic flux is
.
Answer:
Current, I = 0.0011 A
Explanation:
It is given that,
Diameter of rod, d = 2.56 cm
Radius of rod, r = 1.28 cm = 0.0128 m
The resistivity of the pure silicon, 
Length of rod, l = 20 cm = 0.2 m
Voltage, 
The resistivity of the rod is given by :


R = 893692.30 ohms
Current flowing in the rod is calculated using Ohm's law as :
V = I R


I = 0.0011 A
So, the current flowing in the rod is 0.0011 A. Hence, this is the required solution.
The pressure exerted by a fluid solely relies on the depth or height of the fluid, its density, and the gravitational constant. These three are related in the equation:
Pressure = density x g x height
In the problem, point A is within the block inside the tank. The water above the block is assumed to be 0.6 meters. This gives a point A pressure of:
P = 1000 kg/m^3 * 9.81 m/s^2 * 0.6 m = 5,886 Pa or 5.88KPa
The answer will be 8 because kedks
Answer:
0.572
Explanation:
First examine the force of friction at the slipping point where Ff = µsFN = µsmg.
the mass of the car is unknown,
The only force on the car that is not completely in the vertical direction is friction, so let us consider the sums of forces in the tangential and centerward directions.
First the tangential direction
∑Ft =Fft =mat
And then in the centerward direction ∑Fc =Ffc =mac =mv²t/r
Going back to our constant acceleration equations we see that v²t = v²ti +2at∆x = 2at πr/2
So going backwards and plugging in Ffc =m2atπr/ 2r =πmat
Ff = √(F2ft +F2fc)= matp √(1+π²)
µs = Ff /mg = at /g √(1+π²)=
1.70m/s/2 9.80 m/s² x√(1+π²)= 0.572