<em>Steel: 11.0 – 12.5</em>
<em>T̶e̶t̶s̶u̶t̶e̶t̶s̶u̶ ̶T̶e̶t̶s̶u̶t̶e̶t̶s̶u̶</em>
Thanks,
<em>Deku ❤</em>
Answer:
Vf= 7.29 m/s
Explanation:
Two force act on the object:
1) Gravity
2) Air resistance
Upward motion:
Initial velocity = Vi= 10 m/s
Final velocity = Vf= 0 m/s
Gravity acting downward = g = -9.8 m/s²
Air resistance acting downward = a₁ = - 3 m/s²
Net acceleration = a = -(g + a₁ ) = - ( 9.8 + 3 ) = - 12.8 m/s²
( Acceleration is consider negative if it is in opposite direction of velocity )
Now
2as = Vf² - Vi²
⇒ 2 * (-12.8) *s = 0 - 10²
⇒-25.6 *s = -100
⇒ s = 100/ 25.6
⇒ s = 3.9 m
Downward motion:
Vi= 0 m/s
s = 3.9 m
Gravity acting downward = g = 9.8 m/s²
Air resistance acting upward = a₁ = - 3 m/s²
Net acceleration = a = g - a₁ = 9.8 - 3 = 6.8 m/s²
Now
2as = Vf² - Vi²
⇒ 2 * 6.8 * 3.9 = Vf² - 0
⇒ Vf² = 53. 125
⇒ Vf= 7.29 m/s
Answer:
6.39 J of energy is needed to generate 0.71 * 10⁻¹⁶ kg mass
Explanation:
According to the Equation: E = mc²
where the mass, m = 0.71 * 10⁻¹⁶ kg
the speed of light, c = 3 * 10⁸ m/s
The amount of energy needed to generate a mass of 0.71 * 10⁻¹⁶ kg is calculated as follows:
E = (0.71 * 10⁻¹⁶) (3 * 10⁸)²
E = 0.71 * 10⁻¹⁶ * 9 * 10¹⁶
E = 0.71 * 9
E = 6.39 J
Answer:
wave length is 1.2m
Explanation:
since formula of wave length is v/f
v(speed of sound in air at stp is 300ms^-1)
f(frequency 250hertz)
then wave length is 300÷250 which give 1.2m