Answer:
Distance, d = 778.05 m
Explanation:
Given that,
Force acting on the car, F = 981 N
Mass of the car, m = 1550 kg
Initial speed of the car, v = 25 mi/h = 11.17 m/s
We need to find the distance covered by car if the force continues to be applied to the car. Firstly, lets find the acceleration of the car:

Let d is the distance covered by car. Using second equation of motion as :

So, the car will cover a distance of 778.05 meters.
Answer:
it transforms it into high carbon alloy that is harder and can be sharper but is also more brittle in the process.
Explanation:
Explanation:
S =ut + 1/2at^2
S = 0×6.5 + (1/2 × 9.54) × 6.5^2
S =0 + 4.77 ×42.25
S=201.5m