To be able to determine the original speed of the car, we use kinematic equations to relate the acceleration, distance and the original speed of the car moving.
First, we manipulate the one of the kinematic equations
v^2 = v0^2 + 2 (a) (x) where v = 0 since the car stopped
Writing the equation in such a way that the initial velocity or v0 is written on one side of the equation,
<span>we get v0 = sqrt (2(a)(x))
Substituting the known values,
v0 = sqrt(2(3.50)(30.0))
v0 = 14.49 m/s
</span>
Therefore, before stopping the car the original speed of the car would be 14.49 m/s
Answer:
a
b

Explanation:
From the question we are told that
The pressure of the manometer when there is no gas flow is 
The level of mercury is 
The drop in the mercury level at the visible arm is 
Generally when there is no gas flow the pressure of the manometer is equal to the gauge pressure which is mathematically represented as

Here
is the density of mercury with value 
and
is the difference in the level of gas in arm one and two
So


Generally the height of the mercury at the arm connected to the pipe is mathematically represented as

=> 
Generally from manometry principle we have that
![P_G + \rho * g * d - \rho * g * [h - (h_m + d)] = 0](https://tex.z-dn.net/?f=P_G%20%2B%20%5Crho%20%2A%20g%20%20%2A%20d%20%20%20-%20%20%5Crho%20%2A%20%20g%20%20%2A%20%5Bh%20-%20%28h_m%20%2B%20d%29%5D%20%3D%200)
Here
is the pressure of the gas
![P_G +13.6 *10^{3} * 9.8 * 0.039 - 13.6 *10^{3} * 9.8 * [0.950 - (0.148 + 0.039)] = 0](https://tex.z-dn.net/?f=P_G%20%2B13.6%20%2A10%5E%7B3%7D%20%2A%209.8%20%20%2A%200.039%20%20%20%20-%20%2013.6%20%2A10%5E%7B3%7D%20%20%2A%20%209.8%20%20%2A%20%5B0.950%20-%20%280.148%20%2B%200.039%29%5D%20%3D%200)

converting to psig
Energy of wave depends on its amplitude and it is given as

here k = constant
A = amplitude
so energy will increase or decrease depends on the amplitude of the wave
So here if we need to check which wave has lower energy then we need to compare the amplitude.
If the amplitude is less then energy must be less
So please check in the figure that which wave out of A and B has lesser amplitude to find out the wave of lesser energy
The equation formula:
P V = n R T
1,245 * 2 l = n R * 300 K
n R = 1,245 * 2 : 300 = 8.3
P * 2.5 l = n R * 400 K
P * 2.5 = 8.3 * 400
P = 3,320 : 2.5 = 1328 J
Answer: A ) 1,328 joules.
Answer:
In contrast, the intrinsic brightness of an astronomical object, does not depend on the distance of the observer or any extinction. The absolute magnitude M, of a star or astronomical object is defined as the apparent magnitude it would have as seen from a distance of 10 parsecs (33 ly).
Explanation: