The time it takes light from a flash camera to reach a subject 6.0 meters across a room in scientific notation is 2.0 *10^-8 s.
<u>Explanation:</u>
<u>Given</u>
t=?
d=6m
v=3*10^8 m/s
we have, v=d/t
here t=d/v
t=6m/3*10^8 m/s
v=2*10^-8 m/s
The time it takes light from a flash camera to reach a subject 6.0 meters across a room in scientific notation is 2.0 *10^-8 s.
<u></u>
Answer: The greater an object's mass, the more gravitational force it exerts.
Explanation: So, to begin answering your question, Earth has a greater gravitational pull than the moon simply because the Earth is more massive. Sorry if I get this wrong. I am in 5th grade! ♥
Answer:
v_f = 0.87 m/s
Explanation:
We are given;
F_avg = -17700 N (negative because it's backward)
m = 117 kg
Δt = 5.50 × 10^(−2) s
v_i = 7.45 m/s
Now, formula for impulse is given by;
I = F•Δt = - 17700 x 5.50 × 10^(−2) = - 973.5 kg.m/s
From impulse momentum theory, we know that;
Change in momentum of particle is equal to impulse.
Thus,
Δp = I = m•v_f - m•v_i
Thus,
-973.5= 117(v_f - 7.45)
Thus,
-973.5/117 = (v_f - 7.45)
-8.3205 + 7.45 = v_f
v_f = - 0.87 m/s
We'll take absolute value as;
v_f = 0.87 m/s
Explanation:
Given formula:
ME=
mv²+mgh
To make height the subject of the formula, follow the following procedures;
Subtract
mv² from both side of equation
M.E -
mv² =
mv² -
mv²+mgh
This gives:
M.E -
mv² = mgh
Multiply both sides of the expression by 
( M.E -
mv² ) x
=
x mgh
h = ( M.E -
mv² ) x 
Learn more:
Kinetic energy brainly.com/question/6536722
#learnwithBrainly
Answer:
The Taurus "bull" is home to 500 stars, six of which are visible to the naked eye.
Explanation: