Transform boundary
is the answer from stemscopes
Answer:
The average power the woman exerts is 0.5 kW
Explanation:
We note that power, P = The rate at which work is done = Work/Time
Work = Energy
The total work done is the potential energy gained which is the energy due to vertical displacement
Given that the vertical displacement = 5.0 m, we have
Total work done = Potential energy gained = Mass, m × Acceleration due to gravity, g × Vertical height, h
m = 51 kg
g = Constant = 9.81 m/s²
h = 5.0 m
Also, time, t = 5.0 s
Total work done = 51 kg × 9.81 m/s²× 5 m = 2501.55 kg·m²/s² = 2501.55 J
P = 2501.55 J/(5 s) = 500.31 J/s = 500.31 W ≈ 500 W = 0.5 kW.
Answer:
The answer is below
Explanation:
A diver works in the sea on a day when the atmospheric pressure is 101 kPa. The diver uses compressed air to breathe under water. 1700 litres of air from the atmosphere is compressed into a 12-litre gas cylinder. The compressed air quickly cools to its original temperature. Calculate the pressure of the air in the cylinder.
Solution:
Boyles law states that the volume of a given gas is inversely proportional to the pressure exerted by the gas, provided that the temperature is constant.
That is:
P ∝ 1/V; PV = constant
P₁V₁ = P₂V₂
Given that P₁ = initial pressure = 101 kPa, V₁ = initial volume = 1700 L, P₂ = cylinder pressure, V₂ = cylinder volume = 12 L. Hence:
P₁V₁ = P₂V₂
100 kPa * 1700 L = P₂ * 12 L
P₂ = (100 kPa * 1700 L) / 12 L
P₂ = 14308 kPa
Answer:

Explanation:
Height of the cliff is given as

now the time taken by the diver to hit the surface is given as



Now in the same time it has to cover a distance of 13.39 m
so the speed in horizontal direction is given as



The correct answer should be C. standard
When you have standardization developed, then it is possible to compare scores across different scales and make sure that everything works relatively fine.